
Java Tutorial For Beginners

Welcome to this book on "Learning Java In 150 Steps".

I am Ranga Karanam, and I have more than two decades of programming experience.

I love Programming. One of the aims I had when I started in28minutes was to make learning programming easy.

Thanks for helping us provide amazing courses to 300,000 learners across the world.

At In28Minutes, we ask ourselves one question every day: "How do we create awesome learning experiences?"

In this book, you will learn to write object oriented code with Java. You will be exposed to a lot of examples,

exercises and tips. We will take up a lot of examples, and try and see how to write code for those in Java.

Table of Contents

Chapter 01 - Introduction to Programming with Print-Multiplication-Table

Chapter 02 - Understanding Methods

Chapter 03 - Understanding the Java Platform

Chapter 04 - Eclipse

Chapter 05 - Object Oriented Progamming (OOP)

Chapter 06 - Primitive Data Types

Chapter 07 - Introducing Conditionals - if, switch and more

Chapter 08 - Loops

Chapter 09 - Reference Types

Chapter 10 - Arrays and ArrayList

Chapter 11 - Object Oriented Programming (OOP) - Revisited

Chapter 12 - Introducing Collections

Chapter 13 - Introducing Generics

Chapter 14 - Introduction to Functional Programming

Chapter 15 - Threads and Concurrency

Chapter 16 - Introduction To Exception handling

Chapter 17 - File Operations

Chapter 18 - Concurrency : Advanced Topics

Our Approach

We did a study on why students give up on programming?

The popular answer was

Difficulty in writing their first program

Put yourselves in the shoes of a beginner and look at this typical Java Hello World Example .

package ;
public class HelloWorld
{
 public static void main(String[] args) {
 System.out.println("Hello World");

com.in28minutes.firstjavaproject

 }
}

A Programming Beginner will be overwhelmed by this. I remember how I felt when I saw this almost 20 years back.

Stunned.

Why?

There are a number of keywords and concepts - package, public, class, static, void, String[] and a lot more..

What if the programmer makes a typo? Will he be able to fix it?

We believe that there has to be a better way to learn programming.

Why don't we learn programming step by step?

Why should it not be a lot of fun?

Why don't we solve a lot of problems and learn programming as a result?

This is the approach we took to writing this guide and develop our introductory programming courses for Java and

Python.

Do you know? The first 3 hours of our Java Course is available here.

Introduction to Programming with Print-Multiplication-Table

Step 01: First Challenge : The Print-Multiplication-Table (PMT-Challenge)

Learning to program is a lot like learning to ride a bicycle. The first few steps are the most challenging ones.

Once you use this stepwise approach to solve a few problems, it becomes a habit.

In this book, we will introduce you to Java programming by taking on a few simple problems to start off.

Having fun along the way is what we will aim to do.

Are you all geared up, to take on your first programming challenge? Yes? Let's get started then!

Our first programming challenge aims to do, what every kid does in math class: reading out a multiplication table.

The PMT-Challenge

�. Compute the multiplication table for 5 , with entries from 1 to 10 .

�. Display this table.

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
5 * 9 = 45
5 * 10 = 50

As part of solving the multiplication table problem, you will be introduced to:

JShell

Statements

Expressions

https://courses.in28minutes.com/p/java-tutorial-for-beginner-in-250-steps

Variables

Literals

Conditionals

Loops

Methods

Summary

In this step, we:

Stated our first programming challenge, PMT-Challenge

Identified basic Java concepts to learn, to solve this challenge

Step 02: Introducing JShell

JShell is a programming tool, introduced in Java SE 9. JShell is a REPL interface. The term REPL refers to this:

'R' stands for Read; Read the input Java code

'E' means Eval; Evaluate the source code

'P' translates to Print; Print out the result

'L' indicates Loop; Loop around, and wait for the next input

How about starting off exploring Java? Are you game?

Snippet-1: Check the Java programming environment

You can use https://tryjshell.org/ to run the code for the first 25 steps. Or you can Install Java 12+. Here's the

troubleshooting section if you face problems.

Launch up command prompt or Terminal.

Let type in java -version on the terminal and press enter.

 in28minutes$>java -version
 java version "x.0.1"
 Java(TM) SE Runtime Environment (build x.0.1+11)
 Java HotSpot(TM) 64-bit Server VM (build x.0.1+11, mixed mode)
 in28minutes$>

A successful execution displays the version of Java installed your system. You need to have atleast Java 9 to pursue

this book.

Snippet-2: Launch JShell

You can launch JShell by typing jshell at your terminal.

 in28minutes$>jshell

 | Welcome to JShell version x.0.1
 | For an introduction type: /help intro
 jshell>

When run, this command displays basic information about the installed JShell program. A jshell prompt then

appears, which waits for your input.

https://tryjshell.org/
https://github.com/in28minutes/java-a-course-for-beginners/blob/master/00-02-java-eclipse-installation.md#installing-java
https://github.com/in28minutes/java-a-course-for-beginners/blob/master/00-02-java-eclipse-installation.md#troubleshooting

Snippet-3: Sample JShell input, using a built-in command

The JShell command /help , with a parameter intro , gives you basic guidelines on how you use the tool.

 jshell> /help intro

 |
 | intro
 | The jshell tool allows you to Java code, getting immediate results.
 | You can enter a Java definition (variable, method, class, etc), like: int x =8
 | or a Java expression, like: x + x
 | or a Java statement or import.
 | These little chunks of Java code are called 'snippets'.
 | There are also jshell commands that allow you to and
 | control what you are doing, like: /list
 |
 | For a list of commands: /help

 jshell>

Snippet-4: Evaluating an expression

Type 3+4 at the Jshell prompt

 jshell> 3 + 4
 $1 ==> 7
 jshell>

This was your first real REPL cycle! When you type in 3 + 4 , JShell evaluates it and prints the result.

The entity $1 is actually a variable name assigned to the result. We will talk about this later.

Snippet-5: Getting out of JShell

The /exit command terminates the JShell program, and we are back to the terminal prompt.

 jshell> /exit
 | Goodbye

 in28minutes$>

Snippet-6: Again, enter JShell and Exit it!

You can now effortlessly launch, feed code to, and exit from JShell !

 in28minutes$> jshell

 | Welcome to JShell version 9.0.1
 | For an introduction type: /help intro
 jshell> /exit
 | Goodbye

 in28minutes$>

Summary

In this step, we learned:

execute

understand

How to launch JShell from our terminal, and run a few commands on it

How to run Java code on the JShell prompt

Step 03: Welcome to Problem Solving

Lets try to break down the PMT-Challenge problem to be able to solve it.

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
5 * 9 = 45
5 * 10 = 50

Here is how our draft steps look like

Calculate 5 * 3 and print result as 15

Print 5 * 3 = 15 (15 is result of previous calculation)

Do this ten times, once for each table entry (going from 1 to 10)

Summary

In this step, we:

Broke down the PMT-Challenge problem into sub-problems

Step 04: Introducing Expressions

The first part of solving our PMT-Challenge is to calculate the product of 5 and another number, say 3 .

Let's start up jshell and type 5 X 3 .

 in28minutes$> jshell

 | Welcome to JShell version x.0.1
 | For an introduction type: /help intro
 jshell> 5 X 3
 | Error:
 | ';' expected
 | 5 X 3
 | ^
 | Error:
 | not a statement
 | 5 X 3
 | ^
 | Error:
 | ';' expected
 | 5 X 3
 | ^
 | Error:
 | missing return statement
 | 5 X 3
 | ^---^

You probably look at the symbol 'X' as a multiplier, remembering your school days.

Java does not identify ' X ' as the multiplication operator! Java supports multiplication, but only if you use its
predefined operator, * .

Let's type in code shown below:

 jshell> 5 * 3
 $1 ==> 15
 jshell>

Success!

Let's look at some terminology:

5 * 3 is an expression.

5 and 3 are operands. They are also called literals or constant values.

* is an operator.

Java also has built-in operators to perform other numerical tasks, such as:

Addition: +

Subtraction: -

Division: /

Modulo arithmetic: %

The following examples illustrate how to use them.

 jshell> 5 * 10
 $2 ==> 50
 jshell> 5 + 10
 $3 ==> 15
 jshell> 5 - 10
 $4 ==> -5
 jshell> 10 / 2
 $5 ==> 5
 jshell>

Your school math memories are still fresh, and the operators don't seem to disappoint either! + , - and / are

your bread-and-butter operators.

% is the modulo operator, which gives you the remainder when integer division is performed.

 jshell> 9 % 2
 $6 ==> 1
 jshell> 8 % 2
 $7 ==> 0
 jshell>

Snippet: Complex Expressions, Anyone?

Java allows you to use more than one operator within an expression.

Let's look at some simple expressions with multiple operators.

 jshell> 5 + 5 + 5
 $8 ==> 15
 jshell> 5 + 10 - 15

 $9 ==> 0
 jshell> 5 * 5 + 5
 $10 ==> 30
 jshell> 5 * 15 / 3
 $11 ==> 25

Each of above expressions have two operators and three operands.

Summary

In this step, we:

Learned how to construct numeric expressions

Discovered that operators are predefined symbols

Combined several operators to form larger expressions

Step 05: Programming Exercise PE-1 (With Solutions)

At this stage, your smile tells us that you enjoy evaluating Java expressions. What if we tickle your mind a bit, to

make sure it hasn't fallen asleep?

Okay, here comes a couple of programming exercises.

�. Write an expression to calculate the number of minutes in a day.

�. Write an expression to calculate the number of seconds in a day.

Solution 1

60 (minutes in an hour) multipled by 24 (hours in a day)

 jshell> 60 * 24
 $1 ==> 1440

Solution 2

60 (seconds in a minute) multipled by 60 (minutes in an hour) multipled by 24 (hours in a day)

$jshell>60 * 60 * 24

$1 ==> 86400

Step 06: Operators

Lets look at a few more examples to understand operators.

Invalid Operators

Let's type in 5 ** 6 followed by 5 $ 6 in JShell

 jshell> 5 ** 6
 | Error:
 | Illegal start of expression
 | 5 ** 6
 | ^

 jshell> 5 $ 6
 | Error:
 | ';' expected

 | 5 $ 6
 | ^
 | Error:
 | not a statement
 | 5 $ 6
 | ^
 | Error:
 | ';' expected
 | 5 $ 6
 | ^

 jshell> 5 */ 6
 | Error:
 | Illegal start of expression
 | 5 */ 6
 | ^

JShell was not impressed with our efforts at all!

Java has a set of grammar rules, called its syntax. Code that does not follow these rules throw errors. The compiler

informs you by listing the errors, and also provides hints on how you can correct them.

Now, why is an error being thrown?

Operators in Java are all predefined, and limited in number. * is a valid operator, whereas ** and $ were

rejected, with error messages.

Understanding Result of Expression with Mixed Types

Let's look at another example:

 jshell> 5 / 2
 $1 ==> 2
 jshell>

Surprise, Surprise! JShell seems to evaluate 5 / 2 to 2 instead of 2.5 . Where did we go wrong?

Read what follows, with the biggest magnifying lens you can find:

The result of an expression when evaluated, depends on the operator context. This context is determined by the

operands passed to it

There are two kinds of numbers typically used in programming : integer (1,2,3,...) and floating-point (1.1,2.3,

56.7889 etc). These values are represented by different types in Java. Integers are commonly of type int , and
the floating-point numbers are double by default.

In the expression 5/2 , both 5 and 2 are of type int . So, the result is also of type int .

Let's try with a few floating point numbers:

 jshell> 5.0 / 2.0
 $2 ==> 2.5

Both 5.0 and 2.0 are of type double , the result is double . We get a result of 2.5 , as expected.

Let's do a mixed operation - using a floating point number and integer.

 jshell> 5.0 / 2
 $3 ==> 2.5

 jshell>

Among the types int and double , double is considered to be a wider type. When you perform a numeric

operation between two types, the result will be of the wider type.

Understanding Precedence of Operators

Let's look at few complex examples of expressions with more than one operator.

 jshell> 5 + 5 * 6
 $1 ==> 35
 jshell> 5 - 2 * 2
 $2 ==> 1
 jshell> 5 - 2 / 2
 $3 ==> 4
 jshell>

Surprised with the results? You might expect 5 + 5 * 6 evaluate to 10 * 6 i.e. 60. Howeever, we got 35 !

We write English left-to-right, and carry this habit to calculations as well.

In expressions with multiple operators, the order of sub-expression evaluation depends on operator precedence.

The basic rules for operator precedence are actually quite simple (we will look at other rules a little later).

The operators in the set { * , / , % } have higher precedence than the operators in the set { + , - }.

In the expression 5 + 5 * 6 : 5*6 is evaluated first. So, 5 + 5 * 6 becomes 5 + 30 i.e. 35.

5 - 2 * 2 and 5 - 2 / 2 are evaluated by following the same rules.

Use paranthesis for clear code

Java provides syntax elements, called parentheses (and) , to group parts of an expression.

 jshell> (5 - 2) * 2
 $4 ==> 6
 jshell> 5 - (2 * 2)
 $5 ==> 1
 jshell>

When you put an expression in parenthesis, it is evaluated first. (5 - 2) * 2 => 3 * 2 => 6.

Parentheses lead to better readability as they reduce confusion and help avoid errors.

The old adage A stitch in time saves nine rings very true here. Use parentheses to make your code easy to read,

even when they might not be necessary.

Summary

In this step, we:

Discovered that operators are all predefined

Learned that result of operation depends on operand types

Understood what operator precedence means

Used parentheses to group parts of an expression

Step 07: Introducing Console Output

We have computed the product of two literals (as in 5 * 3) in earlier steps.

The next step is to print this result in a customized format - 5 * 3 = 15 .

How do we do this?

Let try typing it in into JShell

jshell> 5 * 3 = 15
| Error:
| unexpected type
| required: variable
| found: value
| 5 * 3 = 15
| ^---^

Hmm! Error.

How do we print text?

Java has a built-in utility method called System.out.println() , that displays text on the console.

jshell> System.out.println(3*4)
12

We formed an expression, 3*4 , and passed it to System.out.println() , which is a built-in Java method.

System.out.println(3*4) is an example of a statement. It is a method call.

The syntax rules for method calls are quite strict, and all its parts are mandatory.

jshell> System.out.println3*4)
| Error:
| ';' expected
| System.out.println3*4)
|___________________^
| Error:
| cannot find symbol
| symbol: variable println3
| System.out.println3*4)
| ^---------------------^

jshell> System.out.println 3*4
| Error:
| ';' expected
| System.out.println 3*4
| ^
| Error:
| cannot find symbol
| symbol: variable println
| System.out.println 3*4
| ^----------------^

What if we want to print an entry of the Multiplication Table, as part of our solution to PMT-Challenge? In other

words, how do we print the exact text 5 * 2 = 10 on the console?

 jshell> System.out.println(5 * 2 = 10)
 | Error:
 | unexpected type
 | required: variable
 | found: value

 | System.out.println(5 * 2 = 10)
 |____________________^--------^

You wanted to print 5 * 2 = 10 on the console. However, we see that we cannot pass 5 * 2 = 10 as an

argument to System.out.println() .

5 * 2 = 10 is not a single value. It is a piece of text with numeric characters, * and = .

In Java, we represent text using String . A String literal is a sequence of characters, enclosed within double

quotes: " and " .

 jshell> System.out.println("5 * 2 = 10")
 | 5 * 2 = 10

Congratulations! You have now figured out how to display not just numbers on the console, but text as well!

Summary

In this step, we:

Were introduced to the System.out.println() method for console output

Used this utility to print a single PMT-Challenge table entry

Step 08: Programming Exercise PE-02

Try and solve the following exercises:

�. Print Hello World onto the console.

�. Print 5 * 3 , as is.

�. Print the calculated value of 5 * 3 .

�. Print the number of seconds in a day, using the System.out.println method.

�. Do a syntax revision for the code that you write for each of the above exercises. In your code, identify the

following elements:

Numeric and string literals

Expressions

Operators

Operands

Method calls

Step 09: Solutions to PE-02

Solution 1

 jshell> System.out.println("Hello World")
 Hello World

Solution 2

 jshell> System.out.println("5 * 3")
 5 * 3
 jshell>

Solution 3

 jshell> System.out.println(5 * 3)
 15

Solution 4

 jshell> System.out.println(60 * 60 * 24)
 86400

Step 10: Whitespace, Case sensitiveness and Escape Characters

The term whitespace refers to any sequence of continuous space, tab or newline characters.

Whitespace

Let's see a few examples of whitespace in action.

Whitespace affects the output when used in-and-around string literals.

jshell> System.out.println("Hello World")
Hello World
jshell> System.out.println("Hello World")
Hello World
jshell> System.out.println("HelloWorld")
HelloWorld

Whitespace is ignored by the compiler when used around numeric expressions.

 jshell> System.out.println(24 * 60 * 60)
 86400
 jshell> System.out.println(24 * 60 * 60)
 86400
 jshell>

Case Sensitive

Java is case sensitive.

System.out.println() involve pre-defined Java elements : the System class name, the out variable name,and

the println method name. All are case-sensitive. If any character in these names is used with a different case,

you get an error.

 jshell> system.out.println("Hello World")
 | Error:
 | package does not exist
 | system.out.println("Hello World")
 | ^-------^

 jshell> System.Out.println("Hello World")
 | Error:
 | cannot find symbol
 | symbol: variable Out

system

 | System.Out.println("Hello World")
 | ^------------^

 jshell> System.out.Println("Hello World")
 | Error:
 | cannot find symbol
 | symbol: method Println(java.lang.string)
 | System.out.Println("Hello World")
 | ^---------------------^

 jshell>

Inside a string literal, the case of characters do not cause errors. The literal will be taken in and printed, as-is.

jshell> System.out.println("hello world")
hello world
jshell> System.out.println("HELLO WORLD")
HELLO WORLD

Escape Characters

An escape character is a special symbol, used with another regular symbol to form an escape sequence. In Java,

the ' \ ' (back-slash) character plays the role of an escape character. This escape sequence changes the original
usage of the symbols.

If you want to print the string delimiter, the " character, you need to escape it with a \ . Without it, a " character

within a string literal causes an error!

 jshell> System.out.println("Hello "World")
 | Error:
 | ')' expected
 | System.out.println("Hello "World")
 | ^

 jshell> System.out.println("Hello \"World")
 Hello "World
 jshell>

The escape sequence \n inserts a newline.

jshell> System. out.println("Hello \n World")
Hello
 World
jshell> System.out.println("Hello n World")
Hello n World
jshell> System.out.println("Hello\nWorld")
Hello
World
jshell>

The escape sequence \t inserts a tab.

 jshell> System.out.println("Hello \t World")
 Hello World
 jshell> System.out.println("Hello t World")
 Hello t World
 jshell> System.out.println("Hello\tWorld")

 Hello World
 jshell>

How do you print a \ ?

jshell> System.out.println("Hello \ World")
| Error:
| illegal escape character
| System.out.println("Hello \ World")

You would need to escape it with another \ . Printing \\ outputs the symbol \ to the console.

 jshell> System.out.println("Hello \\ World")
 Hello \ World
 jshell> System.out.println("Hello \\\\ World")
 Hello \\ World

Summary

In this step, we:

Were introduced to method call syntax, with System.out.println()

Discovered the uses of whitespace characters

Learned about Java escape sequences

Step 11: More On Method Calls

Let's look at method calls with a few more examples.

You know how to invoke a method with a single argument, courtesy System.out.println(3*4) . Other scenarios do
exist, such as

Calling a method without any arguments

Calling a method with several arguments

Let's check them out, using the built-in methods in Java Math class.

Method without parameters

In method calls, parentheses are a necessary part of the syntax. Don't leave them out!

Math.random() prints a random real number in the range [0 .. 1] , a different one on each call

 jshell> Math.random
 | Error:
 | cannot find symbol
 | symbol: Math.random
 | Math.random
 | ^------------- ^
 jshell> Math.random()
 $1 ==> 0.0424279106074651_
 jshell> Math.random()
 $2 ==> 0.8696879746593543
 jshell> Math.random()
 $3 ==> 0.8913591586787125

Method with multiple parameters

How do we call Math.min with two parameters 23 and 45 ?

 jshell> Math.min 23 45
 | Error
 | cannot find symbol
 | symbol: variable min
 | Math.min 23 45
 | ^---------^
 jshell> Math.min(23 45)
 | Error
 | ')' expected
 | Math.min 23 45
 | ---------------^

While making method calls, the programmer must

Enclose all the parameters within parentheses

Separate individual parameters within the list, using the comma symbol ' , '.

 jshell> Math.min(23, 45)
 $4 ==> 23
 jshell> Math.min(23, 2)
 $5 ==> 2
 jshell> Math.max(23, 45)
 $6 ==> 45
 jshell> Math.max(23, 2)
 $7 ==> 2
 jshell>

Math.min() returns the minimum of two given numbers. Math.max() returns the maximum of two given numbers.

Summary

In this step, we:

Understood how zero, or multiple parameters are passed during a method call

Step 12: More Formatted Output

System.out.println() can accept one value as an argument at a maximum.

To display the multiplication table for 5 with a calculated value, we need a way to print both numbers and strings.

For this we would need to use another built-in method System.out.printf() .

When System.out.printf() is called with a single string argument, it prints some illegible information. For now, it

suffices to know, that this information is about the built-in type java.io.PrintStream .

 jshell> System.out.printf("5 * 2 = 10")
 5 * 2 = 10$1 ==> java.io.PrintStream@4e1d422d
 jshell>

The good news is, that if we call the println() method on this, the illegible stuff disappears.

 jshell> System.out.printf("5 * 2 = 10").println()
 5 * 2 = 10

The method System.out.printf() accepts a variable number of arguments:

The first argument specifies the print format. This is a string literal, having zero or more format specifiers. A

format specifier is a predefined literal (such as %d), that formats data of a particular type (%d formats data of

type int).

The trailing arguments are expressions,

Lots of theory? Let's break it down. Let's look at an example.

 jshell> System.out.printf("5 * 2 = %d", 5*2).println()
 5 * 2 = 10
 jshell>

System.out.printf("5 * 2 = %d", 5*2).println() gives an output 5 * 2 = 10 . %d is replaced by the

calculated value of 5*2 .

Let's play a little more with printf :

 jshell> System.out.printf("%d %d %d", 5, 7, 5).println()
 5 7 5

Let's try to display a calculated value. In the example below 5*7 is calculated as 35 .

 jshell> System.out.printf("%d %d %d", 5, 7, 5*7).println()
 5 7 35

Let's use this to print the output in the format that we want to use for multiplication table:

 jshell> System.out.printf("%d * %d = %d", 5, 7, 5*7).println()
 5 * 7 = 35

Congratulations. We are able to calculate 5*7 and print 5 * 7 = 35 successfully.

Exercise

�. Print the following output on the console: 5 + 6 + 7 = 18 . Use three literals 5 , 6 , 7 . Calculate 18 as 5 + 6
+ 7 .

Solution

 jshell> System.out.printf("%d + %d + %d = %d", 5, 6, 7, 5 + 6 + 7).println()
 5 + 6 + 7 = 18
 jshell>

Playing with System.out.printf()

In the example below, there are four format specifiers (%d) and only three value arguments 5, 6, 7 .

 jshell> System.out.printf("%d + %d + %d = %d", 5, 6, 7).println()
 5 + 6 + 7 = | java.util.MissingFormatArgumentException thrown: Format specifier '%d'
 | at Formatter.format (Formatter.java:2580)
 | at PrintStream.format (PrintStream.java:974)
 | at PrintStream.printf (PrintStream.java:870)
 | at (#52:1)

In a call to System.out.printf() , if the number of format specifiers exceeds the number of trailing arguments, the
Java run-time throws an exception.

If the number of format specifiers is less than the number of trailing arguments, the compiler simply ignores the

excess ones.

 jshell> System.out.printf("%d + %d + %d", 5, 6, 7, 8).println()
 5 + 6 + 7
 jshell>

More Format Specifiers

String values can be printed in System.out.printf() , using the format specifier %s .

 jshell> System.out.printf("Print %s", "Testing").println()
 Print Testing

Earlier, we used %d to print an int value. You cannot use %d to display floating point values.

 jshell> System.out.printf("%d + %d + %d", 5.5, 6.5, 7.5).println()
 | java.util.IllegalFormatConversionException thrown: d != java.lang.Double
 | at Formatter$FormatSpecifier.failedConversion(Formatter.java:4331)
 | at Formatter$FormatSpecifier.printInteger(Formatter.java:2846)
 | at Formatter$FormatSpecifier.print(Formatter.java:2800)
 | at Formatter.format(Formatter.java:2581)
 | at PrintStream.format(PrintStream.java:974)
 | at PrintStream.print(PrintStream.java:870)
 | at #(57:1)

Floating point literals (or expressions) can be formatted using %f .

 jshell> System.out.printf("%f + %f + %f", 5.5, 6.5, 7.5).println()
 5.500000 + 6.500000 + 7.500000
 jshell>

Summary

In this step, we:

Discovered how to do formatted output, using System.out.printf()

Stressed on the number and sequence of arguments for formatting

Explored the built-in format specifiers for primitive types

Step 13: Introducing Variables

In the previous steps, we worked out how to print a calculated value as part of our multiplication table.

 jshell> System.out.printf("%d * %d = %d", 5, 1, 5 * 1).println()
 5 * 1 = 5

How do we print the entire multiplication table?

We can do something like this.

 jshell> System.out.printf("%d * %d = %d", 5, 1, 5 * 1).println()
 5 * 1 = 5
 jshell> System.out.printf("%d * %d = %d", 5, 2, 5 * 2).println()
 5 * 2 = 10
 jshell> System.out.printf("%d * %d = %d", 5, 3, 5 * 3).println()
 5 * 3 = 15
 jshell> System.out.printf("%d * %d = %d", 5, 4, 5 * 4).println()
 5 * 4 = 20
 jshell>

Too much work. Isn't it?

If you carefully observe the code, these statements are very similar.

What's changing? The number in the third and fourth parameter slots changes from 1 to 4.

Wouldn't it be great to have something to represent the changing value?

Welcome variables.

 jshell> int number = 10
 number ==> 10
 jshell>

Terminology and Background

In the statement int number = 10 ,

number is a variable.

The literal number is the variable name.

The Java keyword int specifies the type of number .

The literal 10 provided number with an initial value.

This entire statement is a variable definition.

The effects of this variable definition are:

A specific location in the computer's memory is reserved for number .

This location can now hold data of type int .

The value 10 is stored here.

You can change the value of number variable:

 jshell> number = 11
 number ==> 11

Above statement is called variable assignment.

An assignment causes the value stored in the memory location to change. In this case, 10 is replaced with the

value 11 .

You can look up the value of number variable.

 jshell> number
 number ==> 11

You can change the value of a variable multiple times.

 jshell> number = 12
 number ==> 12
 jshell> number
 number ==> 12

Let's create another variable:

 jshell> int number2 = 100
 number2 ==> 100
 jshell> number2 = 101
 number2 ==> 101
 jshell> number2
 number2 ==> 101
 jshell>

The statement int number2 = 100 defines a distinct variable number2 .

How do we use variables to simplify and improve the solution to PMT-Challenge?

Let's take a look.

 jshell> System.out.printf("%d * %d = %d", 5, 4, 5*4).println()
 5 * 4 = 20

Let's define a variable i , and initialize it to 1 .

 jshell>int i = 1
 i ==> 1
 jshell> i
 i ==> 1
 jshell> 5*i
 $1 ==> 5

Let's update the multiplication table printf to use the variable i.

 jshell> System.out.printf("%d * %d = %d", 5, i, 5*i).println()
 5 * 1 = 5

How do we print 5 * 2 = 10 ?

We update i to 2 and execute the same code as before.

 jshell> i = 2
 i ==> 2
 jshell> 5*i
 $2 ==> 10
 jshell> System.out.printf("%d * %d = %d", 5, i, 5*i).println()
 5 * 2 = 10
 jshell>

You can update the value of i to any number.

The previous statement would print the corresponding multiple with 5.

 jshell> i = 3
 i ==> 3
 jshell> System.out.printf("%d * %d = %d", 5, i, 5*i).println()
 5 * 3 = 15
 jshell> i = 10
 i ==> 10_
 jshell> System.out.printf("%d * %d = %d", 5, i, 5*i).println()
 5 * 10 = 50
 jshell>

By varying the value of i , we are able to print different multiples of 5 with the same statement.

Congratulations! You made a major discovery. Variables.

Summary

In this step, we:

Understood the need for variables

Observed what different parts of a variable definition mean

Seen what goes on behind-the-scenes when a variable is defined

Step 14: Programming Exercise PE-03 (With solution)

�. Create three integer variables a , b and c .
Write a statement to print the sum of these three variables.

Change the value of a , and then print this sum.

Then again, change the value of b and print this sum.

Solution to PE-03

 jshell>int a = 5
 a ==> 5
 jshell>int b = 7
 b ==> 7
 jshell>int c = 11
 c ==> 11
 jshell>System.out.printf("a + b + c = %d", a+b+c).println()
 a + b + c = 23
 jshell>a = 2
 a ==> 2
 jshell>System.out.printf("a + b + c = %d", a+b+c).println()
 a + b + c = 20
 jshell>b = 9
 b ==> 9
 jshell>System.out.printf("a + b + c = %d", a+b+c).println()
 a + b + c = 22
 jshell>

Step 15: Using Variables

Variables should be declared before use.

 jshell>newVariable
 | Error:
 | cannot find symbol
 | symbol: newVariable

 | newVariable
 ^------------^

Java is a strongly typed programming language. This means two things:

Every variable in a program must be declared, with a type.

Values assigned to a variable should be:

same type as the variable's type, or

compatible with the variable's type

 jshell> int number = 5.5
 | Error:
 | incompatible types: possible lossy conversion from double to int
 | int number = 5.5
 |_____________^---^
 jshell>

The variable number is an integer, mathematically a number. The constant 5.5 is a number as well.

Why does it result in error?

5.5 is a floating-point number of type double . We are trying to store a double inside a memory slot meant for

int .

Let's consider another example:

 jshell> int number = "Hello World"
 | Error:
 | incompatible types: java.lang.String cannot be converted to int
 | int number = "Hello World"
 |_____________^--------------^
 jshell>

number is an int variable, and we are trying to store a String value "Hello World" . Not allowed.

Summary

In this step, we:

Observed how declaring a variable is important

Understood the compatibility rules for basic Java types

Step 16: Variables: Behind-The-Scenes

Giving a value to a variable, during its declaration, is called its initialization.

 jshell> int number = 5
 number ==> 5
 jshell>

The statement int number = 5 combines a declaration and the initialization of number .

The next statement int number2 = number is a little different.

 jshell> int number2 = number

 number2 ==> 5
 jshell> number2
 number2 ==> 5
 jshell>

The initial value for number2 is another variable, which is previously defined (number).

Here's what goes on behind the scenes with int number2 = number :

A memory slot is allocated for number2 with size of int .

Value stored in number 's slot is copied to number2 's slot.

In example below, a = 100 , c = a + b , a = c are called assignments .

 jshell> int a = 5
 a ==> 5
 jshell> int b = 10
 b ==> 10
 jshell> a = 100
 a ==> 100
 jshell> int c
 c ==> 0
 jshell> c = a + b
 c ==> 110
 jshell> a = c
 a ==> 110
 jshell> int d = b + c
 d ==> 120
 jshell>

Variable assignment is allowed to happen in multiple ways:

From a literal value, to a variable, having compatible types. The statement a = 100 is one such example.

From a variable to another variable, of compatible types.The statement a = c illustrates this case.

From a variable expression to a variable. This expression can be formed with variables and literals of

compatible types, and is evaluated before the assignment. The statement c = a + b below is an example of

this.

An assignment to a constant literal is not allowed.

 jshell> 20 = var
 | Error:
 | unexpected type
 | required : variable
 | found : value
 | 20 = var
 | ^^

 jshell>

Summary

In this step, we discussed how to provide variables with initial values and the basics of assigment.

Step 17: Naming Variables

The syntax rules for variable definition are quite strict. Do we have any freedom with the way we name variables?

The answer is "yes", to some extent.

Variable Name Rules

Here are the Java rules for variable names, in a nutshell:

A variable name can be a sequence, in any order, of

Letters [A-Z, a-z]

Numerical digits [0-9]

The special characters ' $ ' ("dollar") and ' _ ' ("underscore")

With the following exceptions:

The name cannot start with a numerical digit [0-9]

The name must not match with a predefined Java keyword

Let's now see what kinds of errors the compiler throws if you violate these naming rules.

Error : Using a invalid character -

 jshell> int test-test
 | Error:
 | ';' expected
 | int test-test
 | ^

Error : Starting name of a variable with a number

 jshell> int 2test
 | Error:
 | '.class' expected
 | int 2test
 | ^
 | Error:
 | not a statement
 | int 2test
 | ^--^
 | Error:
 | unexpected type
 | required: value
 | found: class
 | int 2test
 | ^--^
 | Error:
 | missing return statement
 | int 2test
 | ^-------^

 jshell>

Error : Using a keyword as the name of variable

In Java, certain special words are called keywords . For example, some of the data types we looked at - int ,
double . These keywords cannot be used as variable names.

 jshell> int int
 ...> ;
 | Error:
 | '.class' expected
 | int int

 | ^
 | Error:
 | unexpected type
 | required: value
 | found: class
 | int int
 | ^--^
 | Error:
 | missing return statement
 | int int
 | ^------...

Variable Naming Conventions

Good programmers write readable code. Giving proper names to your variables makes your code easy to read.

In a football scorecard application, using a name s for a score variable is vague. Something like score carries

more meaning, and is preferred.

 jshell> int s
 s ==> 0
 jshell> int score
 score ==> 0
 jshell>

The Java community, with its wealth of experience, suggests that programmers follow some naming

conventions. Above examples is one of these. Violation of these rules does not result in compilation errors.

That's why, these are called conventions.

In Java, another convention is to use CamelCase when we have multiple words in variable name.

 jshell> int noOfGoals
 noOfGoals ==> 0

noOfGoals is easier to read than noofgoals .

Both noOfGoals and NoOfGoals are equally readable.

But in Java, the convention followed is to start variable names with a lower case letter. So, for a variable,

noOfGoals is preferred.

* NOT RECOMMENDED*

 jshell> int NoOfGoals
 NoOfGoals ==> 0

Your variable names can be very long.

 jshell> int iThinkThisIsQuiteALongName
 iThinkThisIsQuiteALongName ==> 0
 jshell> int iThinkThisIsSuchALongNameThatIMightNeverUseSuchALongNameAgain
 iThinkThisIsSuchALongNameThatIMightNeverUseSuchALongNameAgain ==> 0

However, avoid using very long variable names.

Use the shortest meaningful and readable name possible for your variables.

Summary

In this step, we:

Explored the Java language rules for variable names

Understood that there are conventions to guide us

Looked at a popular variable naming conventions

Step 18: Introducing Primitive Types

The table below lists the primitive types in Java.

Type of

Values

Java

Primitive

Type

Size

(in

bits)

Range of Values Example

Integral

Values
byte 8 -128 to 127

byte b =
5;

Integral

Values
short 16 -32,768 to 32,767

short s =
128;

Integral

Values
int 32 -2,147,483,648 to 2,147,483,647

int i =
40000;

Integral

Values
long 64

-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
long l =

2222222222;

Floating-

Point

Values

float 32
approximately ±3.40282347E+38F. NOT very precise

(avoid for financial/scientific math)

float f =
4.0f;

Floating-

Point

Values

double 64

approximately ±1.79769313486231570E+308. NOT very

precise, but better than float (also avoid for

financial/scientific math)

double d =
67.0;

Character

Values
char 16 '\u0000 to '\uffff

char c =
'A';

Boolean

Values
boolean 1 true or false

boolean
isTrue =
false;

Let's now look at how we create data of these types, and store them in memory.

We choose type for data, based on:

The type of data we want to store

The range of values we would want to store

Note: In the above examples, we used semi-colon ; character at the end. This is the Java statement

separator, which is not mandatory in JShell for single statements. However, it is a must when you use code

editors and IDE's, to write Java code.

Integer Types

The only difference among the integer types is their storage capacity.

 jshell> byte b = 5

 b ==> 5
 jshell> short s = 128
 s ==> 128
 jshell> int i = 40000
 i ==> 40000
 jshell> long l = 2222222222
 l ==> 2222222222
 jshell>

Floating Value Types

double is the default type for floating type values with size 64 bits.

 jshell> double d = 67.0
 d ==> 67.0

float occupies 32 bits. float literals need to have a suffix ' f ' (as in 4.0f).

 jshell> float f = 4.0f
 f ==> 4.0

If this suffix f is omitted, a floating-point number is assumed to be a double . You cannot store a 64 bit value into

32 bits.

 jshell> float f2 = 4.0
 | Error:
 | incompatible types: possible lossy conversion from double to float
 | float f2 = 4.0
 | ^-^

You can store float value in double . Remember, both types store similar kind of values and a float value is

only 32 bits where as double has 64 bits.

 jshell> double d2 = 67.0f
 d2 ==> 67.0

Character Type

The character type char can store a single character symbol. The symbol must be enclosed within a pair of single

quotes, ' and ' .

 jshell> char c = 'A'
 c ==> 'A'

Following are a few char declaration errors: Not using single quotes and trying to store multiple characters.

 jshell> char ch = A
 | Error:
 | cannot find symbol
 | symbol: variable A
 | char ch = A
 | ^

 jshell> char cab = 'AB'
 | Error:
 | unclosed character literal

 | char cab = 'AB'
 | ^

Boolean Type

The concept of a boolean type is rooted in mathematical logic. The data type can store two possible values, true
and false . Both are case-sensitive labels, but not enclosed in quotes.

 jshell> boolean isTrue = false
 isTrue ==> false
 jshell> isTrue = true
 isTrue ==> true
 jshell> boolean isFalse = True
 | Error:
 | cannot find symbol
 | symbol: variable True
 | boolean isFalse = True
 | ^--^

 jshell> isFalse = False
 | Error:
 | cannot find symbol
 | symbol: variable False
 | isFalse = False
 | ^---^

boolean data are mostly used in expressions used to form logical conditions in your code. We will talk more about

this - when we explore Java conditionals.

Summary

In this step, we:

Looked at the primitive data types provided in Java

Understood the categories into which these types are divided

Saw what kind of data can be stored in each primitive type

Step 19: Choosing A Data Type

How do we choose the data type for a variable? Let's look at a few examples.

Example 1 : Goals in a Football match

Consider a sports broadcaster that writes a program to track football scores. In a football game there are two teams

playing. A game is generally 90 minutes long, with extra time pushing it to 120 minutes at the most. Practically

speaking, the scorelines are never huge. From a practical standpoint, the number of goals scored in a match would

never exceed 7200 (the number of seconds in 120 minutes). Playing it a bit safe, a short data type would be

enough to store the score of each side (though a byte would be more than enough).

 jshell> short numTeamAGoals = 0
 numTeamAGoals ==> 0
 jshell> short numTeamBGoals = 0
 numTeamBGoals ==> 0
 jshell>

Example 2 : How do we store population of the world?

We know that the global count of humans is well over 7 billion now, so the only integer data type that can store it is

a long .

 jshell> long globalPopulation = 7500000000;
 globalPopulation ==> 7500000000
 jshell>

Example 3 : How do we store average rainfall in a month?

Rainfall is usually measured in millimeters (mm), and we know computing an average over 30 days is very likely to

yield a floating-point number. Hence we can use a float , or for more accuracy, a double to store that average.

 jshell> float avgJanRainfall = 31.77f;
 avgJanRainfall ==> 31.77
 jshell> double averageJanRainfall = 31.77
 averageJanRainfall ==> 31.77
 jshell>

Example 4 : Grades of a Student

Classroom grades in high school are generally A, B, C ,

For a program that generates a grade report, a char type would be the best bet.

 jshell> char gradeA = 'A'
 gradeA ==> 'A'
 jshell> char gradeB = 'B'
 gradeB ==> 'B'
 jshell> char gradeC = 'C'
 gradeC ==> 'C'
 jshell> char gradeD = 'D'
 gradeD ==> 'D'
 jshell> char gradeF = 'F'
 gradeF ==> 'F'
 jshell>

Example 5 : Is a Number Odd or Even?

A boolean isNumEven is a good bet, with a default initial value of false . It can be changed to true if the number

turns out to be even.

 jshell> boolean isNumEven
 isNumEven ==> false
 jshell> isNumEven = true
 isNumEven ==> true
 jshell>

Summary

In this step, we:

Understood how to think while choosing a data type

Explored cases for integer, floating-point, character and boolean data

Step 20: The Assignment Operator =

We were first exposed to the assignment operator while discussing variable assignment.

We are allowed to use expressions to assign values to variables, using code such as c = a + b .

Let's look at a few additional ways assignment can be done.

 jshell> int i = 10
 i ==> 10
 jshell> int j = 15
 j ==> 15
 jshell> i = j
 i ==> 15
 jshell>

Let's consider the following example:

 jshell> i = i * 2
 i ==> 30
 jshell>

The same variable i appears on both the right-hand-side (RHS) and left-hand-side (LHS). How would that make

any sense?

The expression on the RHS is independently evaluated first. The value we get is next copied into the memory slot of

the LHS variable.

Using the logic above, the assignment i = i * 2 actually updates the value of i (initially 15) to 30 (doubles

it).

Java also does the right thing when it encounters the puzzling statement i = i + i , where i is all over the

place! The code doubles the value of i , and this reflects on the JShell output.

 jshell> i = i + i
 i ==> 60

The next example is self explanatory.

 jshell> i = i - i
 i ==> 0

Variable Increment and Decrement

We have already seen increment by assignment:

 jshell> int i = 0
 i ==> 0
 jshell> i = i + 1
 i ==> 1
 jshell> i = i + 1
 i ==> 2
 jshell> i = i + 1
 i ==> 3
 jshell>

Conversely, the statement i = i - 1 is called a variable decrement. This can also be done repeatedly, and i
changes value every time.

 jshell> i = i - 1
 i ==> 2
 jshell> i = i - 1
 i ==> 1
 jshell> i = i - 1
 i ==> 0
 jshell>

Summary

In this step, we:

Looked at the assignment operator = in a more formal way

Looked at heavily used scenarios for assignment, such as increment and decrement

Step 21: Assignment Puzzles, and PMT-Challenge revisited

Now that we understand how to define, assign to, and use variables in expressions, it's time to push the boundaries

a bit. The following examples explore how we could play around with variables in our code.

Snippet-1 : Pre- and Post- Increment and Decrement

There are two short-hand versions for increment. number++ denotes post-increment. Conversely, ++number
means pre-increment.

Operator ++ can be applied only to variables of integer types, which are byte , short , int and long .

number++ is equivalent to the statement number = number + 1

 jshell> int number = 5
 number ==> 5
 jshell> number++
 $1 ==> 5
 jshell> number
 number ==> 6
 jshell> ++number
 $2 ==> 7
 jshell> number
 number ==> 7
 jshell>

number-- is post-decrement. On the other hand, --number is pre-decrement.

 jshell> number--
 $3 ==> 7
 jshell> number
 number ==> 6
 jshell> --number
 $4 ==> 5
 jshell> number
 number ==> 5
 jshell>

What is the difference between prefix and postfix vesions?

Although both prefix and postfix versions achieve the same visible result in above examples, there is a slight

difference. We will explore this later.

Snippet-2 : Compound Assignment Operators

The compound assignment operator combines the = with a numeric operator.

i += 2 : Add 2 to the current value of i

 jshell> int i = 1
 i ==> 1
 jshell> i = i + 2
 i ==> 3
 jshell> i += 2
 $1 ==> 5
 jshell>

i -= 1 : Subtract 1 from the current value of i

 jshell> i
 i ==> 5
 jshell> i -= 1
 $2 ==> 4
 jshell> i
 i ==> 4
 jshell>

i *= 4 : Multiply i with 4 , and store the result back into i

 jshell> i *= 4
 $3 ==> 20
 jshell> i
 i ==> 20
 jshell>

i /= 4 : Divide i by 4 , and store the result back into i

 jshell> i /= 4
 $4 ==> 5
 jshell> i
 i ==> 5
 jshell>

i %= 2 : Divide i by 2 , and store the remainder back into i

 jshell> i %= 2
 $5 ==> 1
 jshell> i
 i ==> 1
 jshell>

Summary

In the step, we:

Looked at the built-in Java increment and decrement operators

Explored the side-effects of prefix and postfix versions of these operators

Seen the advantages of compound assignment

Step 22: Some JShell Usage Tips

Shortcuts

i. Toggling to limits of current prompt entry

' Ctrl+a ' : to start of line

' Ctrl+e ' : to end of line

ii. Moving up and down history of completed prompt inputs

up-arrow key : move back in time

down-arrow key : move forward in time

iii. Reverse-keyword-search

Search for a term, in reverse order of JShell prompt inputs history : input ' Ctrl+r '

Scrolling within matches (in reverse order of history) : repeatedly input ' Ctrl+r '

/exit : resets and exits the JShell session, clearing all stored variables values.

JShell internal variables : $1 , $2 , and so on.
When expressions involving literals and/or previously declared variables are entered as-is, without

assignment, those expressions are still evaluated. The result is stored in such an internal variable, and is

available for use until the JShell session is reset.

Variable Declaration rules relaxation

i. Single Java statements need not be terminated with the separator ' ; '.

ii. If multiple statements are entered on a single line at the prompt, successive statements must be separated

by the ' ; '. However, the trailing ' ; ' can still be omitted.

Summary

In this step, we:

Explored some useful keyboard shortcuts for JShell commands

Understood the idea behind JShell internal variables

Observed how JShell reduces typing effort, by relaxing some coding rules

Step 23: Introducing Conditionals - the if

The PMT-Challenge needs us to print a total of 10 table entries. The for loop is a suitable iteration mechanism to

get this done. The word loop means exactly what the English dictionary says.

As i varies from 1 through 10 , do some stuff involving i

For the PMT-Challenge, do some stuff would be the call to System.out.printf() .

The way a for loop is structured is:

 for(initialization; condition; update) {
 statement1;
 statement2;
 }

Here's how above code runs

�. Execute initialization code.

�. If condition evaluates to true, execute statements . Else, go out of loop.

�. Execute update

�. Repeat 2 and 3

Does it sound complex? Let's break it down.

Let's start with understanding what condition is all about.

Logical Operators

condition represents a logical value(a true or a false).

Turns out Java has a class of logical operators, which can be used with operands within logical expressions,

evaluating to a boolean value.

While in school, you probably used the = symbol to compare numbers.

The world of Java is a little different. = is assignment operator. == is the comparison operator.

 jshell> int i = 10
 i ==> 10
 jshell> i == 10
 $1 ==> true
 jshell> i == 11
 $2 ==> false

These are other comparison operators as well, such as < and > .

 jshell> i < 5
 $3 ==> false
 jshell> i > 5
 $4 ==> true

<= and >= are simple extensions.

 jshell> i <= 5
 $4 ==> false
 jshell> i <= 10
 $5 ==> true
 jshell> i >= 10
 $6 ==> true
 jshell>

Conditionals: The "if" Statement

We would want to execute specific lines of code only when a condition is true.

Enter if statement.

An if statement is structured this way:

 if (condition) {
 statement;
 }

statement is executed only if condition evaluates to true .

Typically, all the code that we write is executed always.

In the example below, i is less than 5 is always printed.

 jshell> int i = 10
 i ==> 10
 jshell> System.out.println("i is less than 5")
 i is less than 5

Using the if statement, we can control the execution of System.out.println("i is less than 5"); .

 jshell> if (i < 5)
 ...> System.out.println("i is less than 5");
 jshell>

The condition i < 5 will evaluate to false , since i is currently 10 . Nothing is printed to console.

Let's change i to 4 and execute the if condition.

 jshell> i = 4
 i ==> 4
 jshell> if (i < 5)
 ...> System.out.println("i is less than 5");
 i is less than 5
 jshell>

i is less than 5 is printed to console.

By controlling the value stored in the variable i , we are able to control whether the statement
System.out.println("i is less than 5"); actually runs.

Hurrah! We just achieved conditional execution!

Just as we can compare a variable with a literal, it is possible to compare the values of two variables. The same set

of comparison operators, namely == , < , > , <= and >= can be used.

 jshell> int number1 = 5
 number1 ==> 5
 jshell> int number2 = 7
 number2 ==> 7
 jshell> if (number2 > number1)
 ...> System.out.println("number2 is greater than number1");
 number2 is greater than number1

 jshell> number2 = 3
 number2 ==> 3
 jshell> if (number2 > number1)
 ...> System.out.println("number2 is greater than number1");

 jshell>

Summary

In this step, we:

Understood the need for a conditionals

Were introduced to the concept of logical expressions, and conditional operators

Explored usage of the Java if statement

Step 24: Programming Exercise PE-04

�. Create four integer variables a , b , c and d . Write an if statement to print if the sum of a and b is

greater than the sum of c and d .

�. Store three numerical values as proposed angles of a triangle in integer variables angle1 , angle2 and

angle3 . Create an if statement to state whether these three angles together can form a triangle.

Hint: A triangle is a closed geometric figure with three angles, whose sum must exactly equal 180 degrees .

�. Have a variable store an integer. Create an if statement to find out if it's an even number.

Hint: Use operator % .

Step 25: Solution to PE-04

Solution 1

 jshell> int a = 5
 a ==> 5
 jshell> int b = 7
 b ==> 7
 jshell> int c = 4
 c ==> 4
 jshell> int d = 3
 d ==> 3
 jshell> if (a + b > c + d)
 ...> System.out.println("a and b together tower above c plus d");
 a and b together tower above c plus d

 jshell>

Solution 2

 jshell> int angleOne = 55
 angleOne ==> 55
 jshell> int angleTwo = 65
 angleOne ==> 55
 jshell> int angleThree = 60
 angleOne ==> 55
 jshell> if (angleOne + angleTwo + angleThree == 180)
 ...> System.out.println("The three angles together form a triangle");
 The three angles together form a triangle

 jshell> angleThree = 75
 angleOne ==> 55
 jshell> if (angleOne + angleTwo + angleThree == 180)
 ...> System.out.println("The three angles together form a triangle");

 jshell>

Solution 3

 jshell> int num = 10
 num ==> 10
 jshell> if (num % 2 == 0)
 ...> System.out.println("The number is even");
 The number is even

 jshell> num++
 num ==> 11
 jshell> if (num % 2 == 0)
 ...> System.out.println("The number is even");

 jshell>

Step 26: if Statement again

Let's look at a few more examples of if statements.

Snippet-1

Here's a basic example of conditional execution.

 jshell> int i = 5
 i ==> 5
 jshell> if (i == 5)
 ...> System.out.println("i is odd");
 i is odd

Let's add two statements to the second line.

 jshell> if (i == 5)
 ...> System.out.println("i is odd"); System.out.println("i is prime");
 i is odd
 i is prime

 jshell>

Both text messages are printed out.

Let's change value of i to 6 and execute again.

 jshell> i = 6
 i ==> 6
 jshell> if (i == 5)
 ...> System.out.println("i is odd"); System.out.println("i is prime");
 i is prime

 jshell>

i is prime is printed to console. Why?

Why is this statement executed when the condition is false ?

The if statement, by default, binds only to the next statement.

It does not control the execution of System.out.println("i is prime"); , which in fact runs unconditionally,
always.

Is there a way we can ensure conditional execution of a two statements? And more than two?

Snippet-2 : if with statement blocks

We seem to have pulled a rabbit out of the hat here, haven't we! The rabbit lies in the pair of braces : ' { ' and ' } '.

They are used to group a sequence of statements together, into a block. Depending on the condition value (true
or false), either all the statements in this block are run, or none at all.

 jshell> int i = 5
 i ==> 5
 jshell> if (i == 5) {
 ...> System.out.println("i is odd");
 ...> System.out.println("i is prime");
 ...> }
 i is odd
 i is prime

 jshell> i = 6
 i ==> 6
 jshell> if (i == 5) {
 ...> System.out.println("i is odd");
 ...> System.out.println("i is prime");
 ...> }

 jshell>

It is considered good programming practice to always use blocks in an if conditional. Here is an example:

 if (i == 5) {
 System.out.println("i is odd");
 }

A block can also consist of a single statement! This improves readability of code.

Summary

In this step, we:

Saw the importance of using statement blocks with if conditionals

Understood how control flow can be made more readable

Step 27: Introducing Loops: The for Statement

The PMT-Challenge needs us to print a total of 10 table entries. The for loop is a suitable iteration mechanism to

get this done.

The word loop means exactly what the English dictionary says. As i varies from 1 through 10 , do some stuff

involving i

for loop is built this way:

 for(initialization; condition; update) {
 statement1;
 statement1;
 }

Here's how above code runs:

�. Execute initialization code.

�. If condition evaluates to true, execute statements . Else, go out of loop.

�. Execute update

�. Repeat 2 and 3

We've already seen these components in isolation:

initialization : int i = 1

condition : i <= 10

update : i++

Let's now put them together to get the bigger picture. Here is how it might look:

 for (int i = 1; i <= 10; i++) {
 System.out.println("Hello World");
 }

This loop, when executed, prints the message "Hello World" on a separate line, for a total of 10 times.

Snippet-1 : PMT-Challenge Solution

We need to replace the "Hello World" message with the console print of a table entry. This print is controlled by i
taking values from 1 through 10 .

 jshell> int i
 i ==> 0
 jshell> for (i=0; i<=10; i++) {
 ...> System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 ...> }
 5 * 1 = 5
 5 * 2 = 10
 5 * 3 = 15
 5 * 4 = 20
 5 * 5 = 2
 5 * 6 = 30
 5 * 7 = 35
 5 * 8 = 40
 5 * 9 = 45
 5 * 10 = 50

Snippet-1 Explained

�. The first step is the initialization: i = 1 .

�. After this, the statement System.out.printf("%d * %d = %d", 5, i, 5*i).println(); is executed once.

�. Then, the update occurs: i++ .

�. Immediately after, the condition i<=10 is evaluated. It returns true . Progress happens. Since it is a for
loop, the statement is executed again.

�. Thereafter, this sequence is executed until i gets a value of 11 (due to successive updates).

�. The moment i reaches 11 , , the condition becomes false . The looping within the for terminates.

Meanwhile, the Multiplication Table for 5 , for entries 1 through 10 has been displayed!

Now, wasn't that really elegant? It sure was!

Let's pat ourselves on the back for having reached this stage of learning. This elegant, yet powerful technique

(loops) is used in almost every Java program that's written.

Summary

In this step, we:

Observed why we need a looping construct, such as the for

Understood the mechanism of a for loop

Used a for loop in iteration, to solve our PMT-Challenge

Step 28: Programming Exercise PE-05

�. Repeat the entire process at arriving at the Multiplication Table Print problem, now for the number 7 . Start
with a fresh JShell session, if you're still using an existing one for quite some time (Rinse, and repeat!).

�. Use the final solution to print Multiplication Tables for 6 and 10 .

�. Print the integers from 1 to 10 .

�. Print the integers from 10 to 1 .

�. Print the squares of the integers from 1 to 10 .

�. Print the squares of the first 10 even integers.

�. Print the squares of the first 10 odd integers.

Step 29: Solution to PE-05

Solution 2

 jshell> int i
 i ==> 0
 jshell> for (i=0; i<=10; i++) {
 ...> System.out.printf("%d * %d = %d", 6, i, 6*i).println();
 ...> }
 6 * 1 = 6
 6 * 2 = 12
 6 * 3 = 18
 6 * 4 = 24
 6 * 5 = 30
 6 * 6 = 36
 6 * 7 = 42
 6 * 8 = 48
 6 * 9 = 54
 6 * 10 = 60

 jshell> i = 0
 i ==> 0
 jshell> for (i=0; i<=10; i++) {
 ...> System.out.printf("%d * %d = %d", 10, i, 10*i).println();
 ...> }
 10 * 1 = 10
 10 * 2 = 20
 10 * 3 = 30
 10 * 4 = 40
 10 * 5 = 50
 10 * 6 = 60
 10 * 7 = 70
 10 * 8 = 80
 10 * 9 = 90
 10 * 10 = 100

Solution 3

 jshell> for (int i=1; i<=10; i++) {

 ...> System.out.printf(i).println();
 ...> }
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Solution 4

This is the first time we are using i-- . Isn't this interesting?

 jshell> for (int i=10; i>0; i--) {
 ...> System.out.printf(i).println();
 ...> }
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

Solution 5

 jshell> for (int i=1; i<=10; i++) {
 ...> System.out.printf(i*i).println();
 ...> }
 1
 4
 9
 16
 25
 36
 49
 64
 81
 100

Solution 6

update of a for loop can do a lot of things. Here, we are using i += 2 .

 jshell> for (int i=2; i<20; i += 2)
 ...> System.out.printf(i*i).println();
 ...> }
 4
 16
 36
 64
 100
 144

 196
 256
 324
 400

Solution 7

 jshell> for (int i=1; i<=19; i += 2) {
 ...> System.out.printf(i*i).println();
 ...> }
 1
 9
 25
 49
 81
 121
 169
 225
 289
 361

Step 30: Puzzling You With for

In the conceptual form of the for construct:

 for (initialization; condition; updation) {
 statement;
 statement;
 //...
 statement;
 }

It may surprise you that each one of initialization, condition, updation and statements block is optional. They can all

be left out individually, in combination, or all altogether!! Let's examine a few interesting cases in code.

�. Empty initialization, Empty Statement

Increments the control variable in quick succession until the condition evaluates to false.

 jshell> int i = 1
 i ==> 1
 jshell> for (; i<=10; i++);
 jshell> i
 i ==> 11
 jshell>

�. Multiple initializations, Empty Statement

You can have multiple statements in initialization and update separated by , .

 jshell> int j
 i ==> 11
 jshell> for (i=1, j=2; i<=10; i++, j++);
 jshell> i
 i ==> 11
 jshell> j

 j ==> 12
 jshell>

In the example below, i is incremented and j is decremented.

 jshell> for (i=1, j=2; i<=10; i++, j--);
 jshell> i
 i ==> 11
 jshell> j
 j ==> -8
 jshell>

�. Infinite Loop

An infinite loop is one where the condition is left empty. An empty condition always evaluates to true . Since a
for loop only terminates when the condition becomes false , such a loop this never terminates.

It can only be terminated externally with a keyboard interrupt (CTRL + c).

 jshell> for (;;);

 ^C
 jshell>

�. Statement Block in for

As in case of the if conditional statement, we can have statement blocks in for loops as well. As before, we

enclose the statement set between braces (' { ' and ' } '). The statements are executed repeatedly, in the same
order as they appear in the block.

 jshell> for (i=1; i<=5; i++) {
 ...> System.out.println("No 1");
 ...> System.out.println("No 2");
 ...> }
 No 1
 No 2
 No 1
 No 2
 No 1
 No 2
 No 1
 No 2
 No 1
 No 2

Summary

In this step, we saw that all components of a for loop are optional:

initialization

condition

updation

statement block

Step 31: A Review Of Basic Concepts

Before we go further, let's quickly get a Big Picture of what we are doing here!

A computer is a machine that does a job for you and me. It is can be used to run tasks that we find complicated,

time-consuming, or even boring! For instance, a laptop can play music from a CD, videos from the web, or fire a

print job.

We have mobile phones around us, which are mini versions of computers. Then there are others, ranging from

blood-sugar monitors to weather-forecast systems. Computers surround us, wherever we go!

Any computer is made up of two basic layers:

The hardware: Consists of all the electronic and mechanical parts of the computer, including the electronic

circuits.

The software: Describes the instructions fed into the computer, which are stored and run on its hardware.

If the human body were a computer,

Its hardware would consist of the various organs (such as limbs, blood and heart)

Its software would be the signals from the nervous system, which drive these organs.

Computer programming involves writing software instructions to run tasks on a computer. The user who gives

these instructions is called the programmer. Often, computer programming involves solving challenging, and very

interesting problems.

In the previous steps, we introduced you to the basic Java language concepts and constructs.

We solved a programming challenge, the PMT-Challenge using basic Java constructs.

We used JShell REPL to learn the following concepts, Step by-step:

Expressions, Operators and Statements

Variables and Formatted Output

Conditionals and Loops

At each step, we applied fresh knowledge to enhance our solution to the PMT-Challenge

Hope you liked the journey thus far. Next sections delve deeper into Java features, using the same Step by-step

approach. We will catch up again soon, hopefully!

Understanding Methods

Feeling good about where you are right now? You just created an elegant, yet powerful solution to the PMT-

Challenge, using:

Operators, variables and expressions

Built-in formatted output

Conditionals for control-flow, and

Iteration through loops

And guess what we ended up with? A good-looking display of a Multiplication Table! There's a good chance people

in your circles want to see it, use it and maybe share it among their friends.

However, some might be unhappy that it works only for 5 , and not for 8 and 7 . Maybe it would, but then they
would need to type in those lines of code again. This might disappoint them, and your new found popularity would

slide downhill.

Surely a more elegant solution exists, a pattern waiting to unravel itself.

Exist it does, and the mechanism to use it lies with Java methods. A method is a feature that allows you to group

together a set of statements, and give it a name. This name represents the functionality of that set, which can be

re-used when necessary.

A method is essentially a routine that performs a certain task, and can do it any number of times it is asked to. It

may also return a result for the task it performs. The syntax for a method definition is along these lines:

ReturnType methodName () {
 method-body
}

Where

methodName is the name of the routine

method-body is the set of statements

a pair of braces { and } enclose method-body

ReturnType is the type of methodName 's return value

Summary

In this step, we:

Examined the need for labeling code, and its reuse

Learned that a Java method fits the bill

Saw how a method definition looks like, conceptually

Step 01 : Defining A Simple Method

We will start off, by writing a simple method that prints " Hello World " twice on your screen.

 jshell> void sayHelloWorldTwice() {
 ...> System.out.println("Hello World");
 ...> System.out.println("Hello World");
 ...> }
 | created method sayHelloWorldTwice()

A little bit of theory:

Above code for the method is called method definition.

void indicates that the method does not return any computed result - We will examine return values from

methods, a little later.

When the code ran, it didn't exactly welcome us twice, did it? All we got was a boring message from JShell ,
mumbling created method sayHelloWorldTwice() .

That's because defining a method does NOT execute its statement body.

Since the statement block is not stand-alone anymore, its functionality needs to be invoked. This is done by writing

a method call.

Let's look at a few examples for method calls.

 jshell> sayHelloWorldTwice
 | Error:
 | cannot find symbol
 | symbol: variable sayHelloWorldTwice

 | sayHelloWorldTwice
 | ^----------------^

 jshell> sayHelloWorldTwice()
 Hello World
 Hello World

All that we had to do was to add parantheses to name of the method.

The trailing ' ; ' can be left out in JShell , and is another example of syntax rules being relaxed.

Method names need to follow the same rules as variable names.

Summary

In this step we:

Got our hands dirty coding our first method

Learned that defining and invoking methods are two different steps

Step 02: Exercise-Set PE-01

Let's now reinforce our basic understanding of methods, by trying out a few exercises.

Exercise Set -5

�. Write and execute a method named sayHelloWorldThrice to print Hello World thrice.

�. Write and execute a method that prints the following four statements:

I've created my first variable

I've created my first loop

I've created my first method

I'm excited to learn Java

Solutions to PE-01

Solution-1

 jshell> void sayHelloWorldThrice() {
 ...> System.out.println("Hello World");
 ...> System.out.println("Hello World");
 ...> System.out.println("Hello World");
 ...> }
 | created method sayHelloWorldThrice()

 jshell> sayHelloWorldThrice()
 Hello World
 Hello World
 Hello World

Solution-2

 jshell> void sayFourThings() {
 ...> System.out.println("I've created my first variable");
 ...> System.out.println("I've created my first loop");
 ...> System.out.println("I've created my first method");

 ...> System.out.println("I'm excited to learn Java");
 ...> }
 | created method sayFourThings()

 jshell> sayFourThings()
 I've created my first variable
 I've created my first loop
 I've created my first method
 I'm excited to Java

Step 03: Editing A Method Definition (Jshell Tips)

Snippet-01: Editing sayHelloWorldTwice()

 jshell> void sayHelloWorldTwice() {
 ...> System.out.println("Hello World");
 ...> System.out.println("Hello World");
 ...> }
 | created method sayHelloWorldTwice()

The /methods command lists out the methods defined in the current session.

 jshell> /methods
 | void sayHelloWorldTwice()
 jshell>

The /list command lists the code of the specified method.

 jshell> /list sayHelloWorldTwice
 59 : void sayHelloWorldTwice() {
 System.out.println("HELLO WORLD");
 System.out.println("HELLO WORLD");
 }
 jshell>

The /edit command allows you to modify the method definition, in a separate editor window.

 jshell> /edit sayHelloWorldTwice
 | modified method sayHelloWorldTwice
 jshell> sayHelloWorldTwice()
 HELLO WORLD
 HELLO WORLD
 jshell>

The /save method takes a file name as a parameter. When run, it saves the session method definitions to a file.

 jshell> /save backup.txt
 jshell> /exit
 | Goodbye

in28minutes$>

Summary

In this step, we explored a few JShell tips that make life easier for you while defining methods

learn

Step 04: Methods with Arguments

We wrote the method sayHelloWorldTwice to say Hello World twice. In the programming exercise, we wanted to

print Hello World thrice and we wrote a new method sayHelloWorldThrice .

Imagine you're in the Java classroom, where your teacher wants to test your Java skills by saying: "I want you to

print Hello World an arbitrary number of times".

Now, that probably would test your patience as well!

How to write a method to print Hello World an arbitrary number of times?

The thing to note is the word "arbitrary", which means the method body should have no clue! This number has to

come from outside the method, which can only happen with a method call.

External input to a method is given as a method argument, or parameter.

To support arguments during a call, the concept of a method needs to be tweaked to:

 ReturnType methodName(ArgType argName) {

 method-body

 }

The only addition to the concept of a method, is the phrase

ArgType argName

within the parentheses. argName represents the argument, and ArgType is its type. The next example should clear

the air for you.

Snippet-01: Method with an argument: Definition

Let's look at a method definition using an argument numOfTimes .

 jshell> void sayHelloWorld(int numOfTimes) {
 ...> }
 | created method sayHelloWorld(int)

Let's try to call the method.

 jshell> sayHelloWorld()
 | Error:
 | method sayHelloWorld in class cannot be applied to types;
 | required : int
 | found : no arguments
 | reason : actual and formal argument lists differ in length
 | sayHelloWorld(
 |^-----------------^
 jshell> sayHelloWorld(1)
 jshell>

Method call must include the same number and types of arguments, that it is defined to have. sayHelloWorld() is

an error because sayHelloWorld is defined to accept one parameter. sayHelloWorld(1) works.

However, the method does not do anything. Isn't it sad?

Snippet-02 : Passing and accessing a parameter

given

The next example will show you how method body code can access arguments passed during a call. Not only that,

the argument values can be used during computations.

void sayHelloWorld(int numOfTimes) {
 System.out.println(numOfTimes);
}

System.out.println(numOfTimes) prints the value of argument passed.

A method can be invoked many times within a program, and each time different values could be passed to it. The

following example will illustrate this fact.

 jshell> sayHelloWorld(1)
 1
 jshell> sayHelloWorld(2)
 2
 jshell> sayHelloWorld(4)
 4
 jshell> /edit sayHelloWorld
 | modified method sayHelloWorld(int)
 jshell>

Snippet-03: More complex method

Code inside a method can be any valid Java code! For instance, you could write code for iteration, such as a for
loop.

Let's look at an example:

 void sayHelloWorld(int numOfTimes) {
 for (int i=1; i<=numOfTimes; i++) {
 System.out.println(numOfTimes);
 }
 }

In the above example, we printed numOfTimes a total of numOfTimes for each method call.

We print 2 two times and 4 four times.

 jshell> sayHelloWorld(2)
 2
 2
 jshell> sayHelloWorld(4)
 4
 4
 4
 4
 jshell>

Snippet-4 : Saying "Hello World", Again and again...

We wanted to print "Hello World" multiple times. Let's update the method:

 void sayHelloWorld(int numOfTimes) {
 for (int i=1; i<=numOfTimes; i++) {
 System.out.println("Hello World");

 }
 }

Isn't this cool?

 jshell> sayHelloWorld(1)
 Hello World
 jshell> sayHelloWorld(2)
 Hello World
 Hello World
 jshell> sayHelloWorld(4)
 Hello World
 Hello World
 Hello World
 Hello World
 jshell>

You can now proudly demonstrate this code to your Java instructor. Your program can print "Hello World" an

arbitrary number of times!

What started off giving you a headache, will probably keep you in her good books, for the rest of your course!

Armed with this confidence booster, let's now see how Java treats mistakes you may make. .

Snippet-5 : Parameter type mismatch

Java is a strongly typed language, with strict rules laid out for type compatibility. We saw that with variables, and

how they play out with expressions and assignments. The same type compatibility rules are enforced by the

compiler, when it needs to match the arguments from method calls with method definition.

 jshell> sayHelloWorld("value")
 | Error:
 | incompatible types: java.lang.String cannot be converted to int
 | sayHelloWorld("value")
 | ^-----^
 jshell> sayHelloWorld(4.5)
 | Error:
 | incompatible types: possibly lossy conversion from double to int
 | sayHelloWorld(4.5)
 | ^-^
 jshell>

Summary

In this step, we:

Understood why Java supports method arguments, and how we may use them

Observed how method arguments lead to convenience and reuse

Decided to abide by type compatibility for actual arguments

Step 05: Exercise Set PE-02 (With Solutions)

Exercises

�. Write a method printNumbers(int n) that prints all successive integers from 1 to n .

�. Write a method printSquaresOfNumbers(int n) that prints the squares of all successive integers from 1 to

n .

Solution-01

 jshell> void printNumbers(int n) {
 ...> for(int i=0; i< n; i++) {
 ...> System.out.println(i);
 ...> }
 ...> }
 | created method printNumbers(int)

jshell>

Solution 2

 jshell> void printSquaresOfNumbers(int n) {
 ...> for(int i=0; i< n; i++) {
 ...> System.out.println(i*i);
 ...> }
 ...> }
 | created method printSquaresOfNumbers(int)
 jshell>

Step 07: PMT-Challenge Revisited (And Some Puzzles)

A method, in its own right, provides an elegant way to name and reuse a code block. In addition, its behavior can be

controlled with parameters.

Can we top-up the existing solution to the PMT-Challenge, with even more elegance? You're right, we're talking

about:

�. Writing a method to print the multiplication table for 5.

�. Using this method to print the multiplication table for any number.

Want to take a look? Dive right in.

Here's what we did earlier:

 jshell> for (int i=1; i<=10; i++) {
 ...> System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 ...> }
 5 * 1 = 5
 5 * 2 = 10
 5 * 3 = 15
 5 * 4 = 20
 5 * 5 = 25
 5 * 6 = 30
 5 * 7 = 35
 5 * 8 = 40
 5 * 9 = 45
 5 * 10 = 50

Let's wrap this in a method:

 void printMultiplicationTable() {
 for (int i=1; i<=10; i++) {
 System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 }
 }

You can call it to print 5 table.

 jshell> printMultiplicationTable()
 5 * 1 = 5
 5 * 2 = 10
 5 * 3 = 15
 5 * 4 = 20
 5 * 5 = 25
 5 * 6 = 30
 5 * 7 = 35
 5 * 8 = 40
 5 * 9 = 45
 5 * 10 = 50
 jshell>

Summary

In this step, we:

Revisited the PMT-Challenge solution we had earlier

Enclosed its logic within a method definition, printMultiplicationTable()

Haven't fully explored its power yet!

Step 08: Methods With Arguments, And Overloading

The real power of a definition such as printMultiplicationTable() is when we arm it with arguments. Not verbal

arguments, but "value" ones. That's right!

We will modify printMultiplicationTable() to have it accept a parameter, which would make it more flexible.

 void printMultiplicationTable(int number) {
 for (int i=1; i<=10; i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }

We can now print the multiplication table of any number, by calling the method

printMultiplicationTable(number) .

 jshell> printMultiplicationTable(6)
 6 * 1 = 6
 6 * 2 = 12
 6 * 3 = 18
 6 * 4 = 24
 6 * 5 = 30
 6 * 6 = 36
 6 * 7 = 42
 6 * 8 = 48
 6 * 9 = 54
 6 * 10 = 60
 jshell>

Nothing new to explain here. We have only combined stuff you have been learning so far, most recently adding the

flavor of methods to the existing code.

Soak in the power, simplicity and elegance of this program, folks!

Overloaded Methods

It turns out we can call both versions of the method, printMultiplicationTable() and

printMultiplicationTable(5) :

 jshell> printMultiplicationTable()
 5 * 1 = 5
 5 * 2 = 10
 5 * 3 = 15
 5 * 4 = 20
 5 * 5 = 25
 5 * 6 = 30
 5 * 7 = 35
 5 * 8 = 40
 5 * 9 = 45
 5 * 10 = 50
 jshell>

and

 jshell> printMultiplicationTable(5)
 5 * 1 = 5
 5 * 2 = 10
 5 * 3 = 15
 5 * 4 = 20
 5 * 5 = 25
 5 * 6 = 30
 5 * 7 = 35
 5 * 8 = 40
 5 * 9 = 45
 5 * 10 = 50
 jshell>

You can have multiple methods with same name but different number of parameters. This is called method

overloading.

Summary

In this step, we:

Enhanced the logic of printMultiplicationTable() by passing arguments

Added flexibility to the PMT-Challenge solution

Were introduced to the concept of method overloading

Step 09: Methods With Multiple Arguments

It is possible, and pretty useful, to define methods that accept more than one argument.

We have already seen how to call two in-built Java methods, Math.max and Math.min , which accept 2 arguments
each.

Time now to enrich our understanding, by writing one such method ourselves as well.

A method void sum(int, int) that computes the sum of two integers, and prints their output.

 jshell> void sum(int firstNum, int secondNum) {
 ...> int sum = firstNum + secondNum;
 ...> System.out.println(sum);
 ...> }
 | created method sum(int, int)

 jshell> sum(5, 10)
 15
 jshell>

A method void sum(int, int, int) that computes the sum of three integers, and prints their output.

 jshell> void sum(int firstNum, int secondNum, int thirdNum) {
 ...> int sum = firstNum + secondNum + thirdNum;
 ...> System.out.println(sum);
 ...> }
 | created method sum(int,int,int)
 jshell> sum(5, 10, 15)
 30

There are overloaded methods. They have same name sum and have different number of arguments.

Summary

In this step, we:

Used our understanding of method overloading to define our own methods

Step 10: Returning From A Method

A method can also be coded to return the result of its computation. Such a result is called a return value.

A lot of built-in Java methods have return values, the most notable we have seen being Math.min() and

Math.max() .

 jshell> Math.max(15, 25)
 $1 ==> 25
 jshell> $1
 $1 ==> 25

Math.max() does return a value, which is stored in the JShell variable $1 .

A return mechanism is quite important, as it provides you the flexibility of:

Sharing computed results with other code and methods

Improving the breaking down of a problem, into sub-problems

The next example explains how you can collect a method's return value.

 jshell> int max = Math.max(15, 25)
 max ==> 25
 jshell> max
 max ==> 25
 jshell>

We are storing the return value in a variable int max .

We could define our own method that returns a value, in a similar manner. In the method sumOfTwoNumbers above,

instead of displaying sum at once, we could return it to the calling-code.

 jshell> int sumOfTwoNumbers(int firstNum, int secondNum) {
 ...> int sum = firstNum + secondNum;
 ...> return sum;

 ...> }
 | created method sumOfTwoNumbers(int,int)
 jshell> sumOfTwoNumbers(1, 10)
 $2 => 11

The statement return sum; is called a return statement.

When the code sum = sumOfTwoNumbers(1, 10) is run, sum collects the result returned by sumOfTwoNumbers() .
You could now print sum on the console, store it in another variable, or even invoke a different method by passing it

as an argument!

 jshell> sum = sumOfTwoNumbers(1, 10)
 sum => 11_
 jshell> sum = sumOfTwoNumbers(15, 15)
 sum => 30
 jshell>

Summary

In this step, we:

Understood the need for a return mechanism with methods

Explored the syntax for a return statement

Wrote our own method sumOfTwoNumbers() with a return value, and saw how it became more flexible

Step 11: Exercise-Set PE-04 (With Solutions)

Let's now try a few exercises on methods that return values.

Exercises

�. Write a method that returns the sum of three integers.

�. Write a method that takes as input two integers representing two angles of a triangle, and computes the third

angle. Hint: The sum of the three angles of a triangle is 180 degrees.

Solution-01

 jshell> int sumOfThreeNumbers(int firstNum, int secondNum, int thirdNum) {
 ...> int sum = firstNum + secondNum + thirdNum;
 ...> return sum;
 ...> }
 | created method sumOfThreeNumbers(int,int, int)
 jshell>

Solution-02

 jshell> int getThirdAngle(int firstAngle, int secondAngle) {
 ...> int sumOfTwo = firstAngle + secondAngle;
 ...> return 180 - sum;
 ...> }
 | created method getThirdAngle(int,int)
 jshell>

Step 12: Java Methods, A Review

In this section, we introduced you to the concept of methods in Java.

We understood that methods are routines that perform a unit of computation. They group a set of statements

together into a block, and need to be run by being invoked, through a method call.

We can define methods that accept no arguments, a single argument and multiple arguments.

A method can also be defined to return results of its computation, and this makes it your program more flexible.

Understanding the Java Platform

JShell is amazing to start with the basics of Java programming. It abstracts all complexities behind writing,

compiling and running Java code.

What's happening behind the screens? Let's find out.

Step 01: The Java Platform - An Introduction

A computer only understands binary code, which are sequences of 0 s̓ and 1 s̓ (called bits). All instructions to a
computer should be converted to 0 s̓ and 1 s̓ before execution.

When we wrote our code in JShell, how was it converted to binary code?

We write our programs in a high-level language, such as Java, as it is easier to learn, remember and maintain.

Who converts it to binary code?

Typically, Compiler is a program which understands the syntax of your programming language and converts it into

binary code.

Java designers wanted it to be Platform independent. Compile the code once and run it anywhere.

However, different Operating Systems have different instruction sets - different binary code.

Java provides an interesting solution:

All Java compilers translate source code to an intermediate representation (bytecode).

To run Java programs (bytecode), you need a JVM (Java Virtual Machine).

JVM understands bytecode and runs it.

There are different JVM's for different operating systems. Windows JVM converts bytecode into Windows

executable instructions. Linux JVM converts bytecode into Linux executable instructions.

The Java compiler translates Java source code to bytecode, which is stored as a .class file on the computer.

Summary

In this step, we:

Understood the role of the Java compiler in translating source code

Realized the need for an Intermediate Representation (IR) such as bytecode

Understood how the (Compiler + JVM + OS) combination ensure source code portability

Step 02: Creating a Java class

First, let's understand the concept of a class .

Let's consider an example:

A Country is a concept. India, USA and Netherlands are examples or instances of Country.

Similarly, a class is a template. Objects are instances of a class .

We will discuss more about class and object in the section on Object Oriented Programming.

The syntax to create a class, and its objects, is very simple.

 jshell> class Country {
 ...> }
 created class Country

Let's create an instance of the class:

 jshell> Country india = new Country();
 india ==> Country@6e06451e

The syntax is simple - ClassName objectName = new ClassName() .

india is an object of type Country , and is stored in memory at a location indicated by 6e06451e .

Let's create a few more instances of the class:

 jshell> Country usa = new Country();
 usa ==> Country@6e1567f1
 jshell> Country netherlands = new Country();
 netherlands ==> Country@5f134e67
 jshell>

india , usa and netherlands are all different objects of type Country .

We actually left the contents of the class Country bare.

A class does often include both data (member variables) and method definitions. More on this at a relevant time.

Let's consider another example:

 jshell> class Planet {
 ...>}
 created class Planet
 jshell> Planet planet = new Planet();
 planet ==> Planet@56ef9176
 jshell> Planet earth = new Planet();
 earth ==> Planet@1ed4004b
 jshell> Planet planet = new Planet();
 venus ==> Planet@25bbe1b6

We can also create a class for a different concept, like a Planet .

Planet is now a different template. planet , earth and venus are instances of Planet class.

Summary

In this step, we:

Saw how class creation actually creates a new type

Understood how to create instances of classes - objects

Step 03: Adding A Method To A class

A method defined within a class , denotes an action than can be performed on objects of that class .

Let's define a method inside Planet - to revolve() !

 jshell> class Planet {
 ...> void revolve() {
 ...> System.out.println("Revolve");
 ...> }
 ...> }
 replaced class Planet
 update replaced variable planet, reset to null
 update replaced variable earth, reset to null
 update replaced variable venus, reset to null

Syntax of revolve() is similar to other methods we've created before.

The class template got updated as a result of adding new method. Earlier instances planet , earth and

venus got reset to null as they are based on the old template

Let's re-instantiate a few objects.

 jshell> Planet earth = new Planet();
 earth ==> Planet@192b07fd
 jshell> Planet planet = new Planet();
 venus ==> Planet@64bfbc86
 jshell>

How do we call the revolve method?

 jshell> Planet.revolve();
 | Error:
 | non-static method revolve() cannot be referenced from a static context
 | Planet.revolve();
 |^-----------------^
 jshell> earth.revolve();
 Revolve
 jshell> venus.revolve();
 Revolve
 jshell>

Our attempt to perform revolve() did not work with the syntax Planet.revolve() as it is not a static method

(more on that in a later section).

Invoking revolve() through syntax such as earth.revolve() succeeds, because earth is an object of type

Planet .

Summary

In this step, we:

Learned how to add a method definition to an existing class

Discovered how to invoke it, on objects of the class

Step 04: Writing and Running Java Code in separate Source Files

So far, we have enjoyed creating classes and defining methods within them, all with our friendly neighborhood

JShell .

JShell kind of spoiled us kids, by relaxing some Java syntax rules, invoking the compiler on our behalf, and also

running the code like room service.

The time has come for us frog princes to outgrow the proverbial well. Yes, you're right! Time to start writing code in

a proper code editor, and smell the greener grass on that side.

Let's start with creating a new source code file - 'Planet.java'. Choose any folder on your hard-disk and create the

file shown below:

Planet.java

 class Planet {
 void revolve() {
 System.out.println("Revolve");
 }
 }

You can get the code that we wrote earlier in JShell for Planet by running the command /list Planet , and
copying the code.

You can use any text editor of your choice, for now.

The source file name must match the class name it contains. Here, we must name the file Planet.java .

The next course of action would be to compile this code (Stage 2). For that, exit out of JShell , and run back to
your system terminal or command prompt. Now, see what plays out!

 jshell> /exit
 | Goodbye

cd to the folder where you have created the file Planet.java

 in28minutes$> cd in28Minutes/git/JavaForBeginners/
 command-prompt> ls
 Planet.java

Check Java version.

 command-prompt> java -version
 java version "x.0.1"
 Java(TM) SE Runtime Environment (build x.0.1+11)
 Java HotSpot(TM) 64-bit Server VM (build x.0.1+11, mixed mode)

You can compile java code using javac Planet.java . You can see that a new file is created Planet.class . This
contains your bytecode .

 command-prompt> javac Planet.java
 command-prompt> ls
 Planet.class Planet.java_

You can run the class using command java Planet .

 command-prompt> java Planet
 Error: Main method not found inside class Planet, please define the main method as
 public static void main(String[] args)
 or a JavaFX application class must extend javax.application.Application
 command-prompt>

Why is there an error? Let's discuss that in the next step.

Summary

In this step, we:

Ventured out of JShell into unexplored territory, to write source code

Learned how to invoke the compiler to compile source files, from the terminal

Step 05: Introducing main() , And Running Bytecode

In the previous step, we compiled Planet.java. In this step, let's run the bytecode generated, which lies inside

Planet.class.

Snippet-01: Running Planet

Console Commands

 command-prompt> ls
 Planet.class Planet.java
 command-prompt> java Planet
 Error: Main method not found inside class Planet, please define the main method as
 public static void main(String[] args)
 or a JavaFX application class must extend javax.application.Application
 command-prompt>

The code may have compiled without any errors, but what's the use if we cannot run the program to see what stuff

it's got!

The main() method is essential to run code defined within any class .

The definition of main() needs to have this exact synatx:

public static void main(String[] args) { /* <Some Code Goes In Here> */ }

A few details:

void is its return type

main is its name

args is its formal argument. Here, it's an array of String .

`public and static``` are reserved Java keywords. More on these later sections.

Let's add one such definition within the Planet code. Open up your text editor and add the main method as

shown below.

Planet.java

 class Planet {
 void revolve() {
 System.out.println("Revolve");
 }
 public static void main(String[] args) {

 }
 }

Let's run it now:

 command-prompt> java Planet
 Error: Main method not found inside class Planet, please define the main method as
 public static void main(String[] args)
 or a JavaFX application class must extend javax.application.Application

Why is there no change in result?

After changing your Java source file, you need to compile the code again to create a new class file.

 command-prompt> javac Planet.java
 command-prompt> ls
 Planet.class Planet.java_

Let's try it again.

 command-prompt> java Planet
 command-prompt>

We got a blank stare from the terminal. Why?

What did we write in the main method? Nothing.

 public static void main(String[] args) {

 }

Let's fix it. We need to edit Planet.java once again!

Planet.java

 class Planet {
 void revolve() {
 System.out.println("Revolve");
 }
 public static void main(String[] args) {
 Planet earth = new Planet();
 earth.revolve();
 }
 }

Console Commands

 command-prompt> javac Planet.java
 command-prompt> ls
 Planet.class Planet.java
 command-prompt> java Planet
 Revolve
 command-prompt>

Bingo! We finally got what we wanted to see!

Summary

In this step, we:

Learned that we need a main() method to run a Java program

Discovered that after every code update, we need to compile that source file

Step 06: Puzzles About Planet

In this step, let's play with Planet source code. Get ready for a comedy of errors, by trial-and-error!

Below is the source code for Planet that worked so well for us:

Planet.java

 class Planet {
 void revolve() {
 System.out.println("Revolve");
 }

 public static void main(String[] args) {
 Planet earth = new Planet();
 earth.revolve();
 }
 }

Here starts our nut-job.

Snippet-01: Messing-up main() - v1

Change method name from main to main1

Planet.java

 class Planet {
 void revolve() {
 System.out.println("Revolve");
 }

 public static void main1(String[] args) {
 Planet earth = new Planet();
 earth.revolve();
 }
 }

Console Commands

 command-prompt> javac Planet.java
 command-prompt> java Planet
 Error: Main method not found inside class Planet, please define the main method as
 public static void main(String[] args)
 or a JavaFX application class must extend javax.application.Application
 command-prompt>

Don't mess with the method-name of main() .

Other parts also need to remain the same, such as:

The return-type: void

Argument type: String[]

The presence of keywords public and static .

Snippet-02: Messing-up main() - v2

Remove semicolons after statements Planet earth = new Planet() and earth.revolve() .

Planet.java

 class Planet {
 void revolve() {
 System.out.println("Revolve");
 }

 public static void main(String[] args) {
 Planet earth = new Planet()
 earth.revolve()
 }
 }

Console Commands

 command-prompt> javac Planet.java
 Planet.java:6: error: ';' expected
 Planet earth = new Planet()
 |_______________________^
 Planet.java:7: error: ';' expected
 earth.revolve()
 |_____________^
 2 errors
 command-prompt>

The ; symbol is the Java statement separator, which is mandatory.

It is not needed in JShell but mandatory when you write separate Java source files.

Snippet-03: Messing-up main() - v3

Make a typo Planet earth = new Plane();

Planet.java

 class Planet {

 void revolve() {
 System.out.println("Revolve");
 }

 public static void main(String[] args) {
 Planet earth = new Plane();
 earth.revolve();
 }
 }

Console Commands

 command-prompt> javac Planet.java
 Planet.java:6: error: cannot find symbol
 Planet earth = new Plane();
 |________________^
 symbol: class Plane
 location: class Planet

 1 error
 command-prompt>

We misspelled Planet as Plane , and the compiler trapped this error. It shows us a red flag with a message to
help us correct our mistake.

Snippet-04: Messing-up main() - v4

Call a non existing method earth.revolve1(); .

Planet.java

 class Planet {
 void revolve() {
 System.out.println("Revolve");
 }

 public static void main(String[] args) {
 Planet earth = new Planet();
 earth.revolve1();
 }
 }

Console Commands

 command-prompt> javac Planet.java
 Planet.java:7: error: cannot find symbol
 earth.revolve1();
 |_____^
 symbol: method revolve1()
 location: variable earth of type Planet
 1 error
 command-prompt>

We misspelled the name of the revolve() method, to revolve1() . Rightly, got rapped on our knuckles by the
compiler.

Summary

In this step, we:

Learned that the best way to learn about language features is to play around with working code

Observed that JShell simplifies coding for us, even relaxing some syntax rules

Concluded that developing Java code in code-editors is an empowering feeling!

Step 07: The JVM, JRE And JDK

What are JVM, JRE and the JDK?

Apart from the fact that all start with a 'J', there are important differences in what they contain, and what they do.

The following list gives you a bird's eye view of things.

The JVM runs your program bytecode.

JRE = JVM + Libraries + Other Components

Libraries are built-in Java utilities that can be used within any program you create. System.out.println() was

a method in java.lang , one such utility.

Other Components include tools for debugging and code profiling (for memory management and

performance).

JDK = JRE + Compilers + Debuggers

JDK refers to the Java Development Kit. It's an acronym for the bundle needed to compile (with the compiler)

and run (with the JRE bundle) your Java program.

An interesting way to remember this organization is:

JDK is needed to Compile and Run Java programs

JRE is needed to Run Java Programs

JVM is needed to Run Bytecode generated from Java programs

Let's check a couple of scenarios to test your understanding.

Scenario 1: You give Planet.class file to a friend using a different operating system. What does he need to do to run

it?

First, install JRE for his operating system. Run using java Planet on the terminal. He does not need to run javac, as

he already has the bytecode.

Scenario 2: You gave your friend the source file Planet.java. What does he need to do to run it?

Install JDK of a compatible version. Compile code using javac Planet.java. Run java Planet on his terminal.

In summary

Application Developers need ==> JDK

Application Users need ==> JRE

Summary

In this step, we:

Understood the differences in the scope-of-work done by the JVM, JRE and JDK

Realized how each of them could be invoked by different terminal commands, such as javac and java.

Eclipse

TODO - Need Revision

Introducing Java Software Development with Eclipse

Features of the Eclipse IDE (Integrated Development Environment)

Installation & Configuration

Workspace Creation & Configuration

Project Creation & Organization

JRE Version Selection and Included Libraries

Eclipse Java Perspectives

Source Files Organization into Folders

Packages?

IDE User Interface Description

Perspective

Views

Console Content and Display Options

Creating a new Java class in Eclipse (And related source file)

Package name

A Java solution to solving a problem could be composed of several application components. It is

considered good programming arctice to identify a class for each distinct component. Package is the

Java way to organize classes in source code.

Analogy: Eatables in a Refrigerator (Freezer, Chill-Tray, Vegetable-Tray, Bottle-Rack)

Public method stub : can be used to create a default public static void main(String[] args)
signature

(Include Snapshots)

Class creation pop-up, with selected options

Default generated source code in editor window

Customizing the generated source code to our needs

Syntax Highlighting

Keywords

Built-in Types

Constant literals: numbers, strings

Auto-suggest feature of eclipse as code is being typed in

The "Run as --> Java Application" Option to compile-and-run the source code

Option is avaibale only for classes that have a main() method

Using Eclipse in Debug Mode

Execution of the Multiplication Table Program can be done Step by-step. That is, the entire application dies not

execute at one go, printing the final output onto the console. We can stall its flow at several steps, by taking control

of its execution using the Eclipse IDE. This is possible in a special mode of Eclipse, called Debug Mode.

The process is called Debugging, because this mode is heavily used not just to have fun seeing what happens, but

also to detect and fix software bugs. A bug is a defect in the program being written, that leads to its incorrect

execution. The process of removing bugs is called debugging. Humans being humans, programming errors are but

natural, and a debug mode in the IDE is worth its wight in gold to the programmer. Here is how Eclipse facilitates

debugging of Java applications.

Prior to debugging application, we need to set few Break-Points. A Break-Point is a statement in the source of

the program, before which execution under debug mode is suspended, and control is passed to the

programmer.

The overall state of the data in the suspended program is available to the programmer at that particular break-

point. He/she gets to specify one or more break-points in the program, and when the execution is suspended, a

list of possible actions can be performed, including:

Reading & modifying data variables

Resuming program execution

Re-executing current statement

Skipping all statements till the next break-point

and others.

The Eclipse IDE provides a very user-friendly and intuitive interface to the programmer for controlling execution

of a program in Debug Mode (Provide Snapshots of IDE at various stages of Debug Mode execution).

Setting and Removing a Break-point (also Toggling)

Stepping over a method call, or into and out of a method body (during a method call)

Stepping into int print() and int print(int) and int print(int,int,int) gives us interesting

infromation, but stepping into System.out.printf can freak you out! So, you may want to step over it.

For nested method calls, examine the method call Stack Trace (Call child, call parent relationship)

Example : int print() , int print(int) and int print(int,int,int) method call chain of class
MultiplicationTable .

Viewing and Modifying current state of data variables, at a break point

Stepping through from one statement to another in the source code

As we step through, observe the view displaying changes in data variable values

Example of for loop control variable i , inside method int print(int,int,int) of class
MultiplicationTable

Observe that execution exits from the for loop when the condition i<=10 is no longer true .

Re-executing a line of code

Skipping execution of all statements till next break-point

Ignoring all remaining breakpoints, resume execution of code till completion

Eclipse IDE Keyboard Shortcuts

Code Text Editor Shortcuts

New Project/Class Creation Shortcuts

Search for a Class

Differences between JShell and IDE

Variables just declared, but used without an initialization, will flag a compilation error in an IDE! But not so, it seems,

in JShell. In regular software, variable initialization at point of declaration (called a "defintion", as we already know)

is mandatory.

Snippet-1 : JShell redefines variables on demand

 jshell> int i = 2
 $1 ==> 2
 jshell> int i = 4
 $2 ==> 4
 jshell> long i = 1000
 $3 ==> 1000
 jshell>

When the following code (similar to the one given to JShell) is compiled manually or by IDEs such as Eclipse, it will

flag errors!

 package ;

 public class RedefineTestRunner {
 public static void main(String[] args) {
 int i = 2;
 int i = 4;
 long i = 1000;
 System.out.println(i);
 }
 }

com.in28minutes.firstjavaproject

That is because Java source code is governed by strict Scope Rules.

Let's have another look at where we have reached with our solution, to the PMT-Challenge problem. Only now, let's

change the code arrangement.

Snippet-01: Revisited - The PMT-Challenge

MultiplicationTable.java

 package ;
 public class MultiplicationTable {
 public static void print() {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 }
 }
 }

MultiplicationRunner.java

 package ;

 public class MultiplicationRunner {
 public static void main(String[] args) {
 MultiplicationTable table = new MultiplicationTable();
 table.print();
 }
}

Console Output

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

5 * 7 = 35

5 * 8 = 40

5 * 9 = 45

5 * 10 = 50

Snippet-01 Explained

We have now split the code into two source files:

MultiplicationTable.java: Houses the MultiplicationTable class definition, with some methods we

need.

MultiplicationRunner.java: Acts as the client of the MultiplicationTable class , to invoke its
functionality. It defines a main() method, that instantiates a MultiplicationTable object, and invokes its

com.in28minutes.firstjavaproject

com.in28minutes.firstjavaproject

print() method.

After this code was rearranged, we still got it to work!

Print-Multiplication-Table: Enhancements

We now want to enhance our current solution to this challenge, even though we've come a long way. "Once

you get the whiff of success, sky is the limit!". Here is the changes we need:

Pass the number whose table needs to be printed, as an argument

Pass the (continuous) range of numbers, whose index entries in the table are to be printed. (For example,

printing the table entries for 6 , with entries for indexes between 15 to 30).

One way to achieve all this, would involve overloading the print() method. The next example is one such attempt.

Snippet-02: print() overloaded

Overloading print() works for us, and we now support three ways in which to display any table:

 public static void print() {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 }
 }

Console Output

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

5 * 7 = 35

5 * 8 = 40

5 * 9 = 45

5 * 10 = 50

The default table for 5 , with entries fixed within 1 to 10 .

 public static void print(int number) {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }

Console Output

8 * 1 = 8

8 * 2 = 16

8 * 3 = 24

8 * 4 = 32

8 * 5 = 40

8 * 6 = 48

8 * 7 = 56

8 * 8 = 64

8 * 9 = 72

8 * 10 = 80

Printing a table for any number, but with entries fixed between 1 and 1 .

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }

Console Output

6 * 11 = 66

6 * 12 = 72

6 * 13 = 78

6 * 14 = 84

6 * 15 = 90

6 * 16 = 96

6 * 17 = 102

6 * 18 = 108

6 * 19 = 114

6 * 20 = 120

Displaying a table for any number, with entries for any range

The full code:

MultiplicationTable.java

 package ;

 public class MultiplicationTable {
 public static void print() {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 }
 }

 public static void print(int number) {

com.in28minutes.firstjavaproject

 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }
 }

MultiplicationRunner.java

 package ;

 public class MultiplicationRunner {
 public static void main(String[] args) {
 MultiplicationTable table = new MultiplicationTable();
 table.print();
 table.print(8);
 table.print(6, 11, 20);
 }
 }

Issue: Code Duplication In Print-Multiplication-Table

There is an issue with the code for class MultiplicationTable . In the final print format, what if we are asked to
replace the multiplication symbol ' * ' with an ' X ', so that school kids like it better? Since there are three calls to
System.out.printf() , one in each print() version, we make three changes.

Snippet-3: Code Duplication

MultiplicationTable.java

 package ;

 public class MultiplicationTable {
 public static void print() {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d X %d = %d", 5, i, 5*i).println();
 }
 }

 public static void print(int number) {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d X %d = %d", number, i, number*i).println();
 }
 }
 }

Console Output

5 X 1 = 5

com.in28minutes.firstjavaproject

com.in28minutes.firstjavaproject

5 X 2 = 10

5 X 3 = 15

5 X 4 = 20

5 X 5 = 25

5 X 6 = 30

5 X 7 = 35

5 X 8 = 40

5 X 9 = 45

5 X 10 = 50

8 * 1 = 8

8 * 2 = 16

8 * 3 = 24

8 * 4 = 32

8 * 5 = 40

8 * 6 = 48

8 * 7 = 56

8 * 8 = 64

8 * 9 = 72

8 * 10 = 80

6 X 11 = 66

6 X 12 = 72

6 X 13 = 78

6 X 14 = 84

6 X 15 = 90

6 X 16 = 96

6 X 17 = 102

6 X 18 = 108

6 X 19 = 114

6 X 20 = 120

Snippet-3 Explained

Humans make mistakes. The programmer missed out on changing the format symbol in the code for void
print(int, int) , but we don't recommend punishment. He could be overworked, or could only be the
maintainer of code someone else wrote years ago! The point is not to blame human flaws (there are many), but

to show how code duplication causes errors. This issue arises frequently with overloaded methods, point blank.

Instead of trying to change human nature, can we change our software? Let's have a closer look at print() :
The method void print() prints the multiplication table for 5 only, in the default range 1 to 10 .

The method void print(int) outputs the table for any number, but only in the fixed range from 1 to

10 .

The method void print(int,int,int) displays the table for any number, in any range of entries.

A Solution: Code Reuse

There is something huge we observe in the previous example. All overloaded versions of print() have nearly the

same code!

print(int) has wider usage potential than print() . The latter is a special case, as it prints only the for 5 .
We can achieve what print() does, by passing a fixed parameter value of 5 to print(int) . It's simple:
invoke print(int) within print() , by passing 5 to it.

The point to note is, that a more specialized function can be implemented-in-terms-of a more general

function.

Let's now reorganize this part of the code.

Snippet-4: Code Reuse

MultiplicationTable.java

 public static void print() {
 print(5);
 }

 public static void print(int number) {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }

MultiplicationRunner.java

 package ;

 public class MultiplicationRunner {
 public static void main(String[] args) {
 MultiplicationTable table = new MultiplicationTable();
 table.print();
 table.print(8);
 }
 }

Console Output

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

com.in28minutes.firstjavaproject

5 * 7 = 35

5 * 8 = 40

5 * 9 = 45

5 * 10 = 50

8 * 1 = 8

8 * 2 = 16

8 * 3 = 24

8 * 4 = 32

8 * 5 = 40

8 * 6 = 48

8 * 7 = 56

8 * 8 = 64

8 * 9 = 72

8 * 10 = 80

Snippet-4 Explained

When we call a method inside another, the method call statement is replaced by its body (with actual arguments

replacing the formal ones). In the new definition of int print() above, the code executed during the call will be:

 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 }

Extending Code Reuse

The method int print(int,int,int) is a more general version of int print(int) . We can achieve what the
latter computes, by passing fixed range of indexes, namely 1 and 10 , as arguments to the former. have look
into he code that follows.

Snippet-5 : Extending code reuse

MultiplicationTable.java

 public static void print(int number) {
 print(number, 1, 10);
 }

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d X %d = %d", number, i, number*i).println();
 }
 }

MultiplicationRunner.java

 package ;

 public class MultiplicationRunner {
 public static void main(String[] args) {
 MultiplicationTable table = new MultiplicationTable();
 table.print(8);
 table.print(6, 11, 20);
 }
 }

Console Output

8 * 1 = 8

8 * 2 = 16

8 * 3 = 24

8 * 4 = 32

8 * 5 = 40

8 * 6 = 48

8 * 7 = 56

8 * 8 = 64

8 * 9 = 72

8 * 10 = 80

6 * 11 = 66

6 * 12 = 72

6 * 13 = 78

6 * 14 = 84

6 * 15 = 90

6 * 16 = 96

6 * 17 = 102

6 * 18 = 108

6 * 19 = 114

6 * 20 = 120

Snippet-5 Explained

This example merely extended what we did in the previous example. We will will take this extension one level

further now! Yes, you guessed right. We will implement print() in terms of print(int,int,int) .

Snippet-6 : Extending code reuse (contd.)

MultiplicationTable.java

com.in28minutes.firstjavaproject

 public static void print() {
 print(5, 1, 10);
 }

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d X %d = %d", number, i, number*i).println();
 }
 }

MultiplicationRunner.java

 package ;

 public class MultiplicationRunner {
 public static void main(String[] args) {
 MultiplicationTable table = new MultiplicationTable();
 table.print();
 table.print(6, 11, 20);
 }
 }

Console Output

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

5 * 7 = 35

5 * 8 = 40

5 * 9 = 45

5 * 10 = 50

6 * 11 = 66

6 * 12 = 72

6 * 13 = 78

6 * 14 = 84

6 * 15 = 90

6 * 16 = 96

6 * 17 = 102

6 * 18 = 108

6 * 19 = 114

com.in28minutes.firstjavaproject

6 * 20 = 120

Snippet-6 Explained

By extending the same logic of code reuse, the method int print(int,int,int) can be used to implement

the logic of int print() . Just pass in a number parameter 5 , as well as the fixed range parameters 1 and

10 , in a call to the former. int print() is thus implemented-in-terms-of int print(int,int,int) .

Our new version of class MultiplicationTable looks like this:

Snippet-7: Extending Code Reuse (Contd.)

MultiplicationTable.java

 package ;

 public class MultiplicationTable {
 public static void print() {
 print(5, 1, 10);
 }

 public static void print(int number) {
 print(number, 1, 10);
 }

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d X %d = %d", number, i, number*i).println();
 }
 }
 }

The logic of the class MutliplicationRunner does not change at all:

MultiplicationRunner.java:

 package ;

 public class MultiplicationRunner {
 public static void main(String[] args) {
 MultiplicationTable table = new MultiplicationTable();
 table.print();
 table.print(8);
 table.print(6, 11, 20);
 }
 }

Console Output

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

com.in28minutes.firstjavaproject

com.in28minutes.firstjavaproject

5 * 7 = 35

5 * 8 = 40

5 * 9 = 45

5 * 10 = 50

8 * 1 = 8

8 * 2 = 16

8 * 3 = 24

8 * 4 = 32

8 * 5 = 40

8 * 6 = 48

8 * 7 = 56

8 * 8 = 64

8 * 9 = 72

8 * 10 = 80

6 * 11 = 66

6 * 12 = 72

6 * 13 = 78

6 * 14 = 84

6 * 15 = 90

6 * 16 = 96

6 * 17 = 102

6 * 18 = 108

6 * 19 = 114

6 * 20 = 120

Snippet-7 Explained

Neat, isn't it! To make our program school kid friendly, we just need to change one character in the code, take a

peek below.

Snippet-8 : Extending Code Reuse (Contd.)

MultiplicationTable.java:

 package ;

 public class MultiplicationTable {
 public static void print() {
 print(5, 1, 10);
 }

com.in28minutes.firstjavaproject

 public static void print(int number) {
 print(number, 1, 10);
 }

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d X %d = %d", number, i, number*i).println();
 }
 }
 }

Console Output

5 X 1 = 5

5 X 2 = 10

5 X 3 = 15

5 X 4 = 20

5 X 5 = 25

5 X 6 = 30

5 X 7 = 35

5 X 8 = 40

5 X 9 = 45

5 X 10 = 50

8 X 1 = 8

8 X 2 = 16

8 X 3 = 24

8 X 4 = 32

8 X 5 = 40

8 X 6 = 48

8 X 7 = 56

8 X 8 = 64

8 X 9 = 72

8 X 10 = 80

6 X 11 = 66

6 X 12 = 72

6 X 13 = 78

6 X 14 = 84

6 X 15 = 90

6 X 16 = 96

6 X 17 = 102

6 X 18 = 108

6 X 19 = 114

6 X 20 = 120

Snippet-8 Explained

Software Development is an iterative process. The best code that we want to write does not happen at one go. It

starts off at a certain level, and can always be improved. More importantly, such improvements needs to be

remembered, to be applied again at different points in the same program, and across programs. This process is

called Code Refactoring. Thought we'd keep you posted.

Summary

In this step, we:

Explored how to reorganize the code for PMT-Challenge into a class

Understood that overloading works the same way for class methods

Observed that code reuse is possible across overloaded versions of a class method

Object Oriented Progamming (OOP)

How do you design great Object Oriented Programs?

Let's find out

Recommended Videos:

Object Oriented Progamming - Part 1 - https://www.youtube.com/watch?v=NOD802rMMCw

Object Oriented Progamming - Part 2 - https://www.youtube.com/watch?v=i6EztA-F8UI

Step 01: Object Oriented Progamming (OOP) - Basic Terminology

Let's consider a few examples before we get to Object Oriented Progamming.

Humans think in a step by step process.

Let's say I've to take a flight from London to New York. This is how I would think:

Take a cab to London Airport

Check in

Pass Security

Board the flight

Wish the Hostess

Take Off

Cruise

Land

Get off the plane

Take a cab to ..

Procedural programming is just a reflection of this thought process. A procedural program for above process would

look something like this:

https://www.youtube.com/watch?v=NOD802rMMCw
https://www.youtube.com/watch?v=i6EztA-F8UI

takeACabToLondonAirport();
checkIn();
passSecurity();
boardPlane();
wishHostess();
takeOff();
cruiseMode();
land();
getOffPlane();
//...

Object Oriented Programming (OOP) brings in a new thought process around this.

How about thinking in terms of the different Actors? How about storing data related to each actor right beside

itself? How about giving them some responsiblity and let them do their own actions?

Here's how our program would look like when we think in terms of different actors and give them data and

responsibilities

 Person
 name
 boardFlight(Plane flight), wishHostess (Hostess hostess), getOffFlight(Plane flight)

 AirPlane
 altitude, pilot, speed, flightMode
 takeOff(), cruiseMode(), land()

 Hostess
 welcome()

Do not worry about the implementation details. Focus on the difference in approaches.

We have encapsulated data and methods into these entities, which are now called objects. We have defined object

boundaries, and what it can (and cannot) do.

An object has

State : Its data

Behavior : Its operations

The position of an Airplane can change over time. The operations that can be performed on an Airplane
include takeOff() , land() and cruiseMode() . Each of these actions can change its position . Therefore, an
object's behavior can affects its own state.

It's now time to introduce you to some core OOP terms, which will make our future discussions easier.

OOP Terminology

Let's visit and enhance the Planet example we had written a few sections ago. This time, let's also explore the

conceptual angle.

Planet

 class Planet
 name, location, distanceFromSun // data / state / fields
 rotate(), revolve() // actions / behavior / methods

 earth : new Planet
 venus : new Planet

Let's look at some OOP terminology.

A class is a template. An object is an instance of a class. In above example, Planet is a class. earth and venus
are objects.

name , location and distanceFromSun compose object state.

rotate() and revolve() define object's behavior.

Fields are the elements that make up the object state. Object behavior is implemented through Methods.

Each Planet has its own state:

name : "Earth", "Venus"

location : Each has its own orbit

distanceFromSun : They are at unique, different distances from the sun

Each has its own unique behavior:

rotate() : They rotate at different rates (and in fact, different directions!)

revolve() : They revolve round the sun in different orbits, at different speeds

Summary

In this step, we:

Understood how OOP is different from Prodedural Programming

Learned about a few basic OOP terms

Step 02: Programming Exercise PE-01

Exercises

In each of the following systems, identify the basic entities involved, and organize them using object oriented

terminology:

�. Online Shopping System

�. Person

Solution-1: Online Shopping System

 Customer
 name, address
 login(), logout(), selectProduct(Product)

 ShoppingCart
 items
 addItem(), removeItem()

 Product
 name, price, quantityAvailable
 order(), changePrice()

Solution-2: Person

 Person
 name, address, hobbies, work
 walk(), run(), sleep(), eat(), drink()

Step 03: Creating MotorBike class

In this series of examples, we want to model your pet mode of transport, a motorbike. We want to create motorbike

objects and play around with them.

We will start with two java files:

MotorBike.java, which contains the MotorBike class definition. This class will encapsulate our motorbike

state and behavior

MotorBikeRunner.java, with class MotorBikeRunner holding a main method, our program's entry point

Snippet-1: MotorBike Class

MotorBike.java

 package ;
 public class MotorBike {
 //behavior
 void start() {
 System.out.println("Bike started!");
 }
}

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike();
 MotorBike honda = new MotorBike();
 ducati.start();
 honda.start();
 }
 }

Console Output

Bike started!

Bike started!

Snippet-1 Explained

We started off creating a simple MotorBike class with a start method. We created a couple of instances and

invoked the start method on them.

We created two classes because we believe in Seperation of Concerns :

MotorBike class is responsible for all its data and behavior.

MotorBikeRunner class is responsible for running MotorBike examples.

Summary

com.in28minutes.oops

com.in28minutes.oops

In this step, we:

Defined a MotorBike class allowing us to further explore OOP concepts in the next steps

Step 04: Programming Exercise OO-PE-02

Exercises

�. Write a small Java program to create a Book class , and then create instances to represent the following
book titles:

"The Art Of Computer Programming"

"Effective Java"

"Clean Code"

Solution

Book.java

 public class Book {
 private String title;

 public void setTitle(String bookTitle) {
 title = bookTitle;
 }

 public String getTitle() {
 return title;
 }
 }

BookRunner.java

 public class BookRunner {
 public static void main(String[] args) {
 Book taocp = new Book();
 taocp.setTitle("The Art Of Computer Programming");
 Book ej = new Book();
 ej.setTitle("Effective Java");
 Book cc = new Book();
 cc.setTitle("Clean Code");
 System.out.println(taocp.getTitle());
 System.out.println(ej.getTitle());
 System.out.println(cc.getTitle());
 }
 }

Console Output

The Art Of Computer Programming

Effective Java

Clean Code

Step 05: MotorBike - Representing State

An object encapsulates both state and behavior.

State defines "the condition of the object at a given time". State is represented by member variables.

In the MotorBike example, if we need a speed attribute for each MotorBike , here is how we would include it.

Snippet-1 : MotorBike with state variable speed

MotorBike.java

 package ;

 public class MotorBike {
 int speed;
 void start() {
 System.out.println("Bike started!");
 }
 }

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike();
 MotorBike honda = new MotorBike();
 ducati.start();
 honda.start();

 ducati.speed = 100;
 honda.speed = 80;
 ducati.speed = 20;
 honda.speed = 0;
 }
 }

Console Output

Bike started!

Bike started!

Snippet-4 Explained

int speed; within MotorBike , defines a member variable.

It can be accessed within objects such as ducati and honda , by qualifying it with the object name (ducati or

honda).

ducati.speed = 100;
honda.speed = 80;

ducati has its own value for speed , and so does honda . These values are independent of each other. Changing
one does not affect the other.

Classroom Exercise CE-OO-01

�. Update the Book class created previously to include a member variable named noOfCopies , and
demonstrate how it can be set and updated independently for each of the three titles specified earlier.

Solution

com.in28minutes.oops

com.in28minutes.oops

TODO

Step 07: MotorBike - get() and set() methods

In the previous step. we were merrily modifying the speed attribute within the ducati and honda objects directly,

from within the main() program.

 public class MotorBikeRunner {
 public static void main(String[] args) {
 //... Other code
 ducati.speed = 100;
 honda.speed = 0;
 }
 }

This did work fine, but it breaks the fundamental principle of encapsulation in OOP.

"A method of one object, should not be allowed to directly access the state of another object. To do so, such an

object should only be allowed to invoke methods on the target object".

In other words, a member variable should not be directly accessible from methods declared outside its class .

Snippet-3 : MotorBike class with private attributes

MotorBike.java

 package ;

 public class MotorBike {
 private int speed;

 void start() {
 System.out.println("Bike started!");
 }

 void setSpeed(int speed) {
 this.speed = speed;
 }
 }

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike();
 MotorBike honda = new MotorBike();
 ducati.start();
 honda.start();

 ducati.setSpeed(100);
 honda.setSpeed(80);

 ducati.setSpeed(20);
 honda.setSpeed(0);
 }
 }

Console Output

com.in28minutes.oops

com.in28minutes.oops

Bike started!

Bike started!

Snippet-3 Explained

By declaring speed as private , we provide MotorBike with something called access control. Java keywords

such as public and private are called access modifiers. They control what external objects can access within a

given object.

Let's look at this.speed = speed; in the body of method setSpeed() :

An member variable always belongs to a specific instance of that class .

A method argument behaves just like a local variable inside that method.

To differentiate between the two, this is used. The expression this.speed refers to the member variable

speed of a Motorbike object. setSpeed() would be invoked on that very object.

Code written earlier within MotorBikeRunner , such as ducati.speed = 100; would now result in errors! The

correct way to access and modify speed is to invoke appropriate methods such as setSpeed() , on MotorBike
objects.

Classroom Exercise CE-OO-02

�. Update the class Book to make sure it no longer breaks Encapsulation principles.

Solution

TODO

Summary

In this step, we:

Learned about the need for access control to implement encapsulation

Observed that Java provides access modifiers (such as public and private) for such control

Understood the need for get() and set() methods to access object data

Step 08: Accessing Object State

Encapsulation is needed to protect an object's state from direct access by other objects. We were able to protect

the state of MotorBike objects by declaring speed to be private . We have created a sort of rigid situation here,
since the private declaration of speed forbids even a get access. How do we address this issue? Again, the

answer is to provide a method for reading the current speed .

Snippet-4 : getSpeed() of MotorBike

MotorBike.java

 package ;

 public class MotorBike {
 //Same as before

 int getSpeed() {
 return this.speed;
 }
 }

com.in28minutes.oops

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike();
 MotorBike honda = new MotorBike();
 ducati.start();
 honda.start();

 ducati.setSpeed(100);
 honda.setSpeed(80);
 System.out.printf("Current Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Current Honda Speed is : %d", honda.getSpeed()).println();
 }
 }

Console Output

Bike started!

Bike started!

Current Ducati Speed is : 100

Current Honda Speed is : 80

Snippet-4 Explained

Defining a method such as getSpeed() allows us to access the current speed of a MotorBike object.

 int getSpeed() {
 return this.speed;
 }

Eclipse has a very handy feature. When the state elements (member variables) of a class have been defined, it

can generate default get() and set() methods for each of them. You would want to use this regularly, to save on

time and typing effort. Right click on class > Generate Source > Generate Getters and Setters

Summary

In this step, we:

Understood how access control forces us to provide get() methods as well

Explored a few Eclispe tips to generate get() and set() versions for each class attribute

Step 10: Default Object State

What happens if a data element inside an object is not initialized with a value?

Snippet-5 : Default Initialization of Object State

MotorBike.java

//Same as before

MotorBikeRunner.java

com.in28minutes.oops

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike honda = new MotorBike();
 System.out.printf("Current Honda Speed is : %d", honda.getSpeed()).println();
 }
 }

Console Output

Current Honda Speed is : 0

Snippet-6 Explained

When we instantiate an object, all its state elements are always initialized, to the default values of their types. Inside

MotorBike , speed is declared to be an int , and so is initialized to 0 . This happens even before any method of
MotorBike is called, including start() .

You can see that honda.getSpeed() printed 0 even though we did not explictly initialize it.

Default

Summary

In this step, we:

Learnt that default values are assigned to object member variables.

Step 10: Encapsulation: Its Advantages

At the heart of encapsulation, is the need to protect object's state. From whom? Other objects.

Let's look at an example to understand Encapsulation better.

Snippet-7 : Advantage of Encapsulation

MotorBike.java

 package ;

 public class MotorBike {
 private int speed;

 public void start() {
 System.out.println("Bike started!");
 }

 public void setSpeed(int speed) {
 this.speed = speed;
 }

 public int getSpeed() {
 return this.speed;
 }
 }

MotorBikeRunner.java

com.in28minutes.oops

com.in28minutes.oops

 package ;

 public class MotorBikeRunner {

 public static void main(String[] args) {
 MotorBike ducati = new MotorBike();
 ducati.start();
 ducati.setSpeed(-100);
 System.out.printf("Current Ducati Speed is : %d", ducati.getSpeed()).println();
 }
 }

Console Output

Bike started!

Current Ducati Speed is : -100

Snippet-01 Explained

For a motorbike, -100 might be an invalid speed. Currently, we do not have any validation. Having a method

setSpeed allows us to add validation.

Let's see how to do that.

Snippet-02 : Speed Validity Check

MotorBike.java

 package ;

 public class MotorBike {

 //Other code as is

 public void setSpeed(int speed) {
 if(speed > 0)
 this.speed = speed;
 }

 }

MotorBikeRunner.java

//Same as before

The output of this snippet is:

Bike started!

Current Ducati Speed is : 0

Snippet-8 Explained

setSpeed() checks if(speed > 0) and does not update speed for negative values.

This is not perfect solution because the caller of the setSpeed method assumes that he was successful.

Ideally, we should throw an Exception indicating validation error. We will talk about Exceptions later.

com.in28minutes.oops

com.in28minutes.oops

Summary

In this step, we:

Explored the first advantage of encapsulation - A provision for adding data validation

Highlighted how such validation can be done, using the Motorbike example

Step 11: Encapsulation - Advantages (Code Reuse)

We've understood quite a few things about encapsulation under OOP.

Suppose at different points of time, we want to increase the speeds of both Honda and Ducati bikes by a fixed

amount, say 100 mph . The logic would be simple, right? Fetch the current speed of each bike, increment that

fetched value by 100 , and then set the new value back into that bike's speed . The following example puts the
above logic into action.

Snippet-1 : Bulky Speed Increment code

MotorBike.java

// No Change

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike();
 MotorBike honda = new MotorBike();
 ducati.start();
 honda.start();
 ducati.setSpeed(100);

 System.out.printf("Earlier Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Earlier Honda Speed is : %d", honda.getSpeed()).println();

 int ducatiSpeed = ducati.getSpeed();
 ducatiSpeed = ducatiSpeed + 100;
 ducati.setSpeed(ducatiSpeed);

 int hondaSpeed = honda.getSpeed();
 hondaSpeed = hondaSpeed + 100;
 honda.setSpeed(hondaSpeed);

 System.out.printf("Later Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Later Honda Speed is : %d", honda.getSpeed()).println();
 }
 }

The output of this snippet is:

Bike started!

Bike started!

Earlier Ducati Speed is : 100

Earlier Honda Speed is : 0

Later Ducati Speed is : 200

com.in28minutes.oops

Later Honda Speed is : 100

Snippet-1 Explained

Notice the repeated code within MotorBikeRunner ? The code for updating the speed of ducati , is almost the
same as that for honda . Remember at the start of this book, we said something like this:

"The goal of any computer program is to make a task easier, less cumbersome and more elegant for the

programmer."

OOP achieves all thus through encapsulation! The idea is to encapsulate repeated logic within a method, and pass

object-specific information to it as arguments. The next example shows you one way of doing it.

Snippet-2 : Speed Increase through Code Encapsulation

MotorBike.java

 package ;

 public class MotorBike {
 //Other code same as before
 public void increaseSpeed(int howMuch) {
 this.speed = this.speed + howMuch;
 }
 }

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {

 MotorBike duati = new MotorBike();
 MotorBike honda = new MotorBike();
 ducati.start();
 honda.start();

 ducati.setSpeed(100);

 System.out.printf("Earlier Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Earlier Honda Speed is : %d", honda.getSpeed()).println();

 ducati.increaseSpeed(100);
 honda.increaseSpeed(100);

 System.out.printf("Later Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Later Honda Speed is : %d", honda.getSpeed()).println();
 }
 }

The output of this snippet is:

Bike started!

Bike started!

Earlier Ducati Speed is : 100

Earlier Honda Speed is : 0

com.in28minutes.oops

com.in28minutes.oops

Later Ducati Speed is : 200

Later Honda Speed is : 100

Snippet-2 Explained

The method increaseSpeed() has been added to MotorBike . It can be invoked on the ducati and honda
objects.

Let's now add a feature to MotorBike , by which speed can be decreased.

Snippet-3 : Speed Increase And Decrease through Code Encapsulation

MotorBike.java

 package ;

 public class MotorBike {
 // Other methods same as before
 public void decreaseSpeed(int howMuch) {
 this.speed = this.speed - howMuch;
 }
 }

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike();
 MotorBike honda = new MotorBike();
 ducati.start();
 honda.start();

 ducati.setSpeed(100);
 System.out.printf("Earlier Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Earlier Honda Speed is : %d", honda.getSpeed()).println();

 ducati.increaseSpeed(100);
 honda.increaseSpeed(100);
 ducati.decreaseSpeed(50);
 honda.decreaseSpeed(50);

 System.out.printf("Later Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Later Honda Speed is : %d", honda.getSpeed()).println();

 ducati.decreaseSpeed(200);
 honda.decreaseSpeed(200);

 System.out.printf("Final Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Final Honda Speed is : %d", honda.getSpeed()).println();
 }
 }

The output of this snippet is:

Bike started!

Bike started!

Earlier Ducati Speed is : 100

com.in28minutes.oops

com.in28minutes.oops

Earlier Honda Speed is : 0

Later Ducati Speed is : 150

Later Honda Speed is : 50

Final Ducati Speed is : -50

Final Honda Speed is : -150

Snippet-3 Explained

The method decreaseSpeed() has been added to MotorBike . It can be invoked on the ducati and honda
objects inside the main() method of MotorBikeRunner .

On of the things you can observe again is Negative Speed Values. Our validation needs to be improved.

Snippet-4 : Validation across methods, repeated!

MotorBike.java

 package ;

 public class MotorBike {

 //Same as before

 public void increaseSpeed(int howMuch) {
 if(this.speed + howMuch > 0)
 this.speed = this.speed + howMuch;
 }

 public void decreaseSpeed(int howMuch) {
 if(this.speed - howMuch > 0)
 this.speed = this.speed - howMuch;
 }
 }

MotorBikeRunner.java

 //Same as before

The output of this snippet is:

Bike started!

Bike started!

Earlier Ducati Speed is : 100

Earlier Honda Speed is : 0

Later Ducati Speed is : 150

Later Honda Speed is : 50

Final Ducati Speed is : 150

Final Honda Speed is : 50

Snippet-4 Explained

com.in28minutes.oops

We have achieved data validation, because attempts to decrease the speed of ducati and honda below 0 are

now ignored.

But this has come at a cost, which is code bloat.

How do we reduce duplication?

Snippet-5: Validation by code reuse

MotorBike.java

 package ;

 public class MotorBike {
 //Other methods same as before

 public void setSpeed(int speed) {
 if(speed > 0)
 this.speed = speed;
 }

 public void increaseSpeed(int howMuch) {
 setSpeed(this.speed + howMuch);
 }

 public void decreaseSpeed(int howMuch) {
 setSpeed(this.speed - howMuch);
 }
 }

MotorBikeRunner.java

 //Same as before

The output of this snippet is:

Bike started!

Bike started!

Earlier Ducati Speed is : 100

Earlier Honda Speed is : 0

Later Ducati Speed is : 150

Later Honda Speed is : 50

Final Ducati Speed is : 150

Final Honda Speed is : 50

Snippet-5 Explained

The idea behind this solution is, that an update is the same as a set() operation. Since setSpeed() already has a

validation check, it can be called inside both increaseSpeed() and decreaseSpeed() with appropriate

parameters.

In this way, the validation logic would be reused across update methods.

Be always careful. Duplication of logic makes your code difficult to maintain.

com.in28minutes.oops

Summary

In this step, we:

Started exploring the next advantage of encapsulation - code reuse

Mapped this understanding to the MotorBike example, building on data validation

Step 12: Programming Exercise PE-OO-03

Exercises

�. Use an encapsulation technique to write methods for the Book class , that
Increase the number of books

Decrease the number of books

Solution

BookRunner.java

 public class BookRunner {
 public static void main(String[] args) {
 Book taocp = new Book();
 taocp.setTitle("The Art Of Computer Programming");
 Book ej = new Book();
 ej.setTitle("Effective Java");
 Book cc = new Book();
 cc.setTitle("Clean Code");

 System.out.println(taocp.getTitle());
 System.out.println(ej.getTitle());
 System.out.println(cc.getTitle());

 taocp.increaseCopies(10);
 ej.increaseCopies(15);
 cc.increaseCopies(20);
 taocp.decreaseCopies(5);
 ej.decreaseCopies(10);
 cc.decreaseCopies(15);

 System.out.println(taocp.getNumberOfCopies());
 System.out.println(ej.getNumberOfCopies());
 System.out.println(cc.getNumberOfCopies());
 }
 }

Book.java

 public class Book {
 private String title;
 private int numberOfCopies;

 public void setTitle(String bookTitle) {
 title = bookTitle;
 }

 public String getTitle() {
 return title;
 }

 public void setNumberOfCopies(int numberOfCopies) {
 if(numberOfCopies > 0) {
 this.numberOfCopies = numberOfCopies;

 }
 }

 public int getNumberOfCopies() {
 return numberOfCopies;
 }

 public void increaseCopies(int howMuch) {
 setNumberOfCopies(numberOfCopies + howMuch);
 }

 public void decreaseCopies(int howMuch) {
 setNumberOfCopies(numberOfCopies - howMuch);
 }
 }

Console Output

The Art Of Computer Programming

Effective Java

Clean Code

5

5

5

Step 13: Introducing Constructors

When we create Ducati and Honda motorbikes, we may want to configure them with some start speeds.

Suppose our whim is that a Ducati bike starts with 100 mph, and a Honda with 200 mph.

Snippet-1: MotorBike Constructor

MotorBike.java

 package ;

 public class MotorBike {
 private int speed;

 MotorBike(int speed) {
 if(speed > 0)
 this.speed = speed;
 }

 //Same as before

 }

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike(100);

com.in28minutes.oops

com.in28minutes.oops

 MotorBike honda = new MotorBike(200);
 ducati.start();
 honda.start();
 System.out.printf("Earlier Ducati Speed is : %d", ducati.getSpeed()).println();
 System.out.printf("Earlier Honda Speed is : %d", honda.getSpeed()).println();
 }
 }

The output of this snippet is:

Bike started!

Bike started!

Earlier Ducati Speed is : 100

Earlier Honda Speed is : 200

Snippet-1 Explained

We defined a single-argument constructor for MotorBike , whosw definition looks like this:

public MotorBike(int speed){ /* Constructor Code Goes Here */ }

The constructor is a method, whose name is the same as the class name. All Java rules for a method apply to

constructors as well. Constructor cannot be directly called.

A constructor is always invoked when a class object is created, using the new keyword. A constructor for a

class could accept zero, one or more than one arguments. Let's next write some full-blooded code for a

MotorBike constructor.

Summary

In this step, we were introduced to the concept of a class constructor

Programming Exercise PE-OO-04, And More On Constructors

Exercises

�. Rewrite the Book class solution by using a constructor, which accepts an integer argument specifying the

initial number of copies to be published:

"The Art Of Computer Programming" : 100 copies

"Effective Java" : 75 copies

"Clean Code" : 60 copies

Solution To PE-OO-04

BookRunner.java

 public class BookRunner {
 public static void main(String[] args) {
 Book taocp = new Book(100);
 taocp.setTitle("The Art Of Computer Programming");

 Book ej = new Book(75);
 ej.setTitle("Effective Java");

 Book cc = new Book(60);
 cc.setTitle("Clean Code");

 System.out.println(taocp.getTitle());

 System.out.println(taocp.getNumberOfCopies());

 System.out.println(ej.getTitle());`
 System.out.println(ej.getNumberOfCopies());

 System.out.println(cc.getTitle());
 System.out.println(cc.getNumberOfCopies());
 }
 }

Book.java

 public class Book {
 private String title;
 private int numberOfCopies;

 public Book(int numberOfCopies) {
 this.numberOfCopies = numberOfCopies;
 }

 public void setTitle(String bookTitle) {
 title = bookTitle;
 }

 public String getTitle() {
 return title;
 }

 public int getNumberOfCopies() {
 return numberOfCopies;
 }
 }

Console Output

The Art Of Computer Programming

100

Effective Java

75

Clean Code

60

More on Constructors

We enjoyed defining the MotorBike class and checking out the behavior of its instances, ducati and honda .

When we started off , we created instances of MotorBike classes using:

MotorBike ducati = new MotorBike();

Did you notice something familiar? Doesn't the expression new MotorBike() look like a constructor call?

As it turns out, it is a constructor call on MotorBike !

When we define a class in Java (even a seemingly empty one), some behind-the-scene magic happens. Consider

one such class Cart :

 class Cart {

 };

This class has neither state, nor behavior. When we try to create instances of this "empty" class :

 class CartRunner {
 public static void main(String[] args) {
 Cart cart = new Cart();
 }
 }

The code seems to compile, execute and get initialized quite smoothly! What happens is, that the compiler silently

generates a default constructor for Cart .

A default constructor is one that accepts no arguments. It is as if the Cart class were defined this way:

 class Cart {
 public Cart() {
 }
 };

A constructor may also have overloaded definitions.

Let's now try to create MotorBike instances with default initialization, just as we did with Cart .

Snippet-2 : Default Motorbike Construction?

MotorBike.java

 package ;

 public class MotorBike {

 private int speed;

 MotorBike(int speed) {
 if(speed > 0)
 this.speed = speed;
 }
 }

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike(100);
 MotorBike honda = new MotorBike(200);
 MotorBike yamaha = new MotorBike();
 }
 }

Console Output

com.in28minutes.oops

com.in28minutes.oops

Compiler Error

Snippet-2 Explained

The compiler flags an error with MotorBikeRunner.java! MotorBike yamaha = new MotorBike(); is failing

compilation. Why?

No default constructor is generated here! If you provide any constructor definition in a class, the compiler will not

add a default constructor. Do them all yourself, if you donʼt like what I do for you! is what it yells back.

If you need the default constructor, you can explicitly add it.

Snippet-3 : Programmer-defined default constructor

MotorBike.java

 package ;

 public class MotorBike {
 //state
 private int speed;

 //behavior
 MotorBike() {
 this(5);
 }

 MotorBike(int speed) {
 if(speed > 0)
 this.speed = speed;
 }

 }

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike(100);
 MotorBike honda = new MotorBike(200);
 MotorBike yamaha = new MotorBike();
 System.out.printf("Earlier Yamaha Speed is : %d", yamaha.getSpeed()).println();
 }
 }

The output of this snippet is:

Earlier Yamaha Speed is : 5

Snippet-3 Explained

We defined a zero-argument constructor MotorBike() , to enable default object initialization. But what are we
doing in its body with the statement this(5); ?

We have called the constructor MotorBike(int) , qualified with the this keyword, within Motorbike() .

Primitive Data Types

com.in28minutes.oops

com.in28minutes.oops

Earlier, we looked at basic Java types (including int , double and boolean), and got a little familiar with them.

We used literal values, declared variables and formed expressions using them.

Java primitive types include:

Integer Types

byte

short

int

long

Floating-Point Types

float

double

Character Type

char

Logical Type

boolean

In this section, let's play with each of these types to understand them further.

Step 01: The Integer Types

Integers are not much of a mystery, are they? They've been part of us since our school days, and we normally prefer

them over other numbers (they scare us less!).

Java supports them with ease, and we have coded quite a few examples using them, already.

Java also has a wrapper class corresponding to each of them, which make their primitive versions more versatile.

The wrapper classes we are talking about are:

Byte : for byte

Short : matching short

Integer corresponding to int

Long : about long

Let's see how we can work with them.

Snippet-01 : Integer Sizes

Look at all the information these tiny classes hold for you! As they say, "fore-warned is fore-armed". Depending on

the data (range and size) your program handles, you decide which types to use, to store them.

 jshell> Byte.SIZE
 $1 ==> 8
 jshell> Byte.BYTES
 $2 ==> 1
 jshell> Byte.MAX_VALUE
 $3 ==> 127
 jshell> Byte.MIN_VALUE
 $4 ==> -128
 jshell> Short.BYTES
 $5 ==> 2
 jshell> Integer.BYTES
 $6 ==> 4
 jshell> Long.BYTES
 $7 ==> 8
 jshell> Short.MAX_VALUE

 $8 ==> 32767
 jshell> Integer.MAX_VALUE
 $8 ==> 2147483647
 jshell> int i = 100000;
 i ==> 100000
 jshell> long l = 50000000000;
 | Error:
 | integer number too large: 50000000000
 | long l = 50000000000;
 |_________^
 jshell> long l = 50000000000l;
 l ==> 50000000000
 jshell>

Integer Type Conversions

Problems will (and should) arise if we attempt to store large data into smaller bins. The compiler warns the

programmer about such issues by flagging errors. However, if the programmer is aware of the risks and intends to

go ahead, explicit casts are her tools to push the code through.

Operations in the other direction (storing a smaller data value in a larger bin), is a piece of cake for the compiler.

Such a conversion is called an implicit cast.

Snippet-02 : Integer Type Conversions

Attempting to store a long value into an int variable will give us a compiler error. However, you can use an

explicit cast, such as i = (int) l; .

 jshell> int i = 100000;
 i ==> 100000
 jshell> long l = 50000000000l;
 l ==> 50000000000
 jshell> i = l;
 | Error :
 | incompatible types: possible lossy conversion from long to int
 | i = l;
 |_____^
 jshell> i = (int) l;
 i ==> -1539607552
 jshell> l = i;
 l ==> -1539607552
 jshell>

The compiler is not responsible for the type-safety of this statement. The onus is on me, the programmer.

Remember our earlier statement on possible incorrect program behavior? As you can see, a different value got

stored in i .

Summary

In this step, we:

Explored the wrapper classes present for the primitive integer types

Understood the different capacities and data ranges of these types

Examined how to use explicit and implicit casts

Step 02: Integer Representations, And Other Puzzles

In a decimal system, the allowed digits are 0 through 9 . When a value of 10 is encountered, the number of digits

increases by 1, and its representation is " 10 ".

Those familiar with number systems would know that decimal is not the only system that computers understand.

Other number systems that the Java language supports are Octal (Base-8) and Hexadecimal (Base-16).

In an Octal system, the allowed digits are 0 through 7 , and a value 8 is represented by " 010 ". The leading 0 is

added only to distinguish the octal format from the decimal one.

In a Hexadecimal system, the allowed digits are 0 through 9 , followed by a through f (or A through F). A
value of 16 is represented by " 0x10 ". Here, a leading 0x is added to help the compiler recognize Hexa decimal

representation.

Let's see how Java supports these three number systems.

Snippet-01 : Storing Octal and Hexadecimal in Integer types

There are no number-system specific integer types in Java! The same int type is used to store decimal, octal and

hexadecimal values.

If we adhere to to number system conventions about valid digits and understand the compiler hints, we get no

surprises.

 jshell> int eight = 010;
 eight ==> 8
 jshell> int sixteen = 0x10;
 sixteen ==> 16
 jshell> int fifteen = 0xf;
 fifteen ==> 15
 jshell> int eight = 08;//8 is invalid octal digit
 | Error:
 | integer number too large : 08
 | int eight = 08;
 |___________^
 jshell> int big = 0xbbaacc;
 big ==> 12298956
 jshell>

Snippet-02 : More Integer Type-casting

There are two kinds of assignments:

Literal-to-variable assignment: With short s = 123456; , the data is clearly out of range (this is known at
compile-time). The compiler flags an error.

Variable-to-variable assignment: Consider sh = in; . The value stored in int in at that stage was 4567 ,
which is well within the range of the short type. The compiler chooses not to take chances and flags an error.

This can again be preempted with a explicit cast sh = (short) in .

 jshell> byte b = 128;
 | Error:
 | incompatible types: possible lossy conversion from int to byte
 | byte b = 128;
 |_________^--^
 jshell> short s = 123456;
 | Error:
 | incompatible types: possible lossy conversion from int to short
 | short s = 123456;
 |__________^-------^
 jshell> short sh = 3456;
 sh ==> 3456
 jshell> int in = 4567;
 in ==> 3456
 jshell> sh = in;

 | Error:
 | incompatible types: possible lossy conversion from int to short
 | sh = in;
 |______^
 jshell> sh = (short) in;
 sh ==> 4567
 jshell> int num = sh;
 num ==> 4567
 jshell>

Built-In Operators For Integer Types

We already had a glimpse of arithmetic operators for the integer types:

+

-

*

/

%

++ (both prefix and post-fix increment)

-- (both prefix and post-fix increment)

The increment and decrement operators are an interesting case, as they are actually short-hands for multiple

statements. When we use their prefix and post-fix versions, we need to look out for side-effects.

Snippet-03 : Increment & Decrement Operators

With post-fix increment, such as in int j = i++; , the increment takes place after the assignment is done. j gets

the value before increment.

 jshell> int i = 10;
 i ==> 10
 jshell> int j = i++;
 j ==> 10
 jshell> i
 i ==> 11

When prefix increment is involved, as with int n = ++m; , the increment is carried out before the assignment. n
gets the value after increment.

 jshell> int m = 10;
 m ==> 10
 jshell> int n = ++m;
 n ==> 11
 jshell> m
 m ==> 11

With post-fix decrement, as with int l = k--; , the decrement occurs after the assignment is done. As far as
prefix decrement is concerned, such as in int q = --p; , the decrement is performed before the assignment.

 jshell> int k = 10;
 k ==> 10
 jshell> int l = k--;
 l ==> 10
 jshell> k
 k ==> 9
 jshell> int p = 10;
 p ==> 10

 jshell> int q = --p;
 q ==> 9
 jshell> p
 p ==> 9
 jshell>

Summary:

In this step, we:

Looked at the number-systems supported in Java for integers

Examined how prefix and post-fix versions work for increment and decrement operators

Step 03: Classroom Exercise CE-01 (With Solutions)

Exercise Set

�. Create a Java class BiNumber that stores a pair of integers, and has the following functionality:

Can be created by passing its initial two numbers to store

Must Support Addition and Multiplication operations on the stored integers

An operation to double the values of both numbers

Operations to access each number individually

In short, we must be able to write code like this in the main method of our runner class:

 BiNumber numbers = new BiNumber(2, 3);
 System.out.println(numbers.add());
 System.out.println(numbers.multiply());
 numbers.double();
 System.out.println(numbers.getNumber1());
 System.out.println(numbers.getNumber2());

Solution to CE-01

BiNumber.java

 package ;

 public class BiNumber {
 private int number1;
 private int number2;

 public BiNumber(int number1, int number2) {
 this.number1 = number1;
 this.number2 = number2;
 }

 public int add() {
 return number1 + number2;
 }

 public int multiply() {
 return number1 * number2;
 }

 public void doubleValue() {
 number1 *= 2;

com.in28minutes.primitive.datatypes

 number2 *= 2;
 }

 public int getNumber1() {`
 return number1;
 }

 public int getNumber2() {
 return number2;
 }

 public void setNumber1(int number1) {
 this.number1 = number1;
 }

 public void setNumber2(int number2) {
 this.number2 = number2;
 }
 }

BiNumberRunner.java

 package ;

 public class BiNumberRunner {
 public static void main(String[] args) {
 BiNumber numbers = new BiNumber(2, 3);
 System.out.println(numbers.add());
 System.out.println(numbers.multiply());
 numbers.doubleValue();
 System.out.println(numbers.getNumber1());
 System.out.println(numbers.getNumber2());
 }
 }

Console Output

5

6

4

6

Step 05: Floating-Point Types

You would recall there are two types in Java to support floating-point numbers:

double : The default type for floating-point literals, with a capacity of 8 bytes

float : A narrower, less precise representation for floating-point data. It has a capacity of 4 bytes.

Let's quickly refresh what we know, with a few code snippets.

Snippet-01 : double and float

Default floating point type in Java is double . A float literal must be accompanied with a trailing f or F .

 jshell> float f = 34.5;
 | Error:
 | incomaptible types: possible lossy conversion from double to float

com.in28minutes.primitive.datatypes

 | float f = 34.5;
 |_________^---^
 jshell> float f = 34.5f;
 f ==> 34.5
 jshell> float fl = 34.5F;
 fl ==> 34.5
 jshell> double d = 34.5678;
 d ==> 34.5678
 jshell> float flo = d;
 | Error:
 | incomaptible types: possible lossy conversion from double to float
 | float flo = d;
 |__________^
 jshell> float flo = (float) d;
 flo ==> 34.567
 jshell>

Snippet-02 : Operators for type double

You can use operators ++ , -- and % on double.

jshell> double dbl = 34.5678;
dbl ==> 34.5678

jshell> dbl++
$3 ==> 34.5678

jshell> dbl
dbl ==> 35.5678

jshell> dbl--
dbl ==> 35.5678
jshell> dbl % 5
dbl ==> 4.567799999999998

You would need an explicit cast to convert a float to an integer value int i = (int)f .

 jshell> float f = 34.5678f;
 f ==> 34.5678
 jshell> int i = f;
 | Error:
 | incomaptible types: possible lossy conversion from float to int
 | int i = f;
 |_______^
 jshell> int i = (int)f;
 i ==> 34
 jshell> float fl = i;
 fl ==> 34.0
 jshell>

Summary

In this step, we:

Saw how we create literals and variables of the floating-point types

Understood the differences between double and float

Step 06: Introducing BigDecimal

Compact though they are, double and float are not very precise representations of floating-point numbers.

In fact, they are not used in computations that require high degrees for accuracy, such as scientific experiments

and financial applications. The next example shows you why.

 jshell> 34.56789876 + 34.2234
 $1 ==> 68.79129875999999

The literal expression 34.56789876 + 34.2234 should evaluate to 68.79129876 . Above addition is not really
accurate.

This is due to a flaw in floating-point representations, used in the double and float types.

The BigDecimal class was introduced in Java to tide over these problems.

Accuracy of BigDecimal representation is retained only when String literals are used to build it.

 jshell> BigDecimal number1 = new BigDecimal("34.56789876");
 number1 ==> 34.56789876
 jshell> BigDecimal number2 = new BigDecimal("34.2234");
 number2 ==> 34.2234_

A BigDecimal type can be used to create only immutable objects. The values in an immutable object cannot be

changed after creation.

You can see that the value of number1 is not changed on executing number1.add(number2) . To get the result of the
sum, we create a new variable sum .

 jshell> number1.add(number2);
 $2 ==> 68.79129876
 jshell> number1
 number1 ==> 34.56789876
 jshell> BigDecimal sum = number1.add(number2);
 sum ==> 68.79129876

Summary

In this step, we:

Learned that double and float are not very precise data types

Were introduced to the BigDecimal built-in data type

Understood that BigDecimal is immutable

Saw that accuracy is best achieved when you construct BigDecimal data using string literals

Step 06: BigDecimal Operations

Let's look at a few other operations defined in the BigDecimal class.

Snippet-01: Arithmetic Operations

All BigDecimal operations support only BigDecimal operands.

 jshell> BigDecimal number1 = new BigDecimal("11.5");
 number1 ==> 34.56789876
 jshell> BigDecimal number2 = new BigDecimal("23.45678");
 number2 ==> 23.45678
 jshell> number1.add(number2);
 $1 ==> 34.95678

BigDecimal does not jell well with primitive types.

 jshell> int i = 5;
 i ==> 5
 jshell> number1.add(i);
 | Error:
 | incompatible types: int cannot be converted to BigDecimal
 | number1.add(i);
 |_____________^

We can add, multiple, divide or subtract BigDecimal values.

 jshell> number1.add(new BigDecimal(i));
 $2 ==> 16.5
 jshell> number1.multiply(new BigDecimal(i));
 $3 ==> 67.5
 jshell> number1.divide(new BigDecimal(100));
 $4 ==> 0.115
 jshell>

Summary

In this step, we:

Explored the BigDecimal methods for doing some basic arithmetic

Found that BigDecimal has constructors accepting most basic Java numeric types

Step 07: Classroom Exercise CE-02

Exercise-Set

Write a Program that does a Simple Interest computation for a Principal amount. Recall that the formula for such a

calculation is:

Total amount (TA) = Principal Amount (PA) + (PA * Simple Interest (SI) Rate * Duration In Years (N))

In essence, write a SimpleInterestCalculator class that can be used in the following manner:

 SimpleInterestCalculator calculator = new SimpleInterestCalculator("4500.00", "7.5");
 BigDecimal totalValue = calculator.calculateTotalValue(5); //5 year duration
 System.out.println(totalValue);

Solution To CE-02

SimpleInterestCalculatorRunner.java

 package ;
 import BigDecimal;

 public class SimpleInterestCalculatorRunner {
 public static void main(String[] args) {
 SimpleInterestCalculator calculator = new SimpleInterestCalculator("4500.00", 7.5");
 BigDecimal totalValue = calculator.calculateTotalValue(5); //5 year duration
 System.out.println(totalValue);
 }
 }

java.math.

com.in28minutes.primitive.datatypes
java.math.

SimpleInterestCalculator.java

Console Output:

6187.50000

Tip: The import Statement

The Java import statement is Required in each source file that uses a class from another package . Hence, both
SimpleInterestCalculator.java (class definition) and SimpleInterestCalculatorRunner.java (runner class
definition) need to import class java.math.BigDecimal .

package java.lang.* is imported by default.

The .* suffix indicates that all classes in the package java.lang are being imported.

Summary

In this step, we:

Used BigDecimal values in a stand-alone Java program

Learnt how to make use of built-in Java packages, through the import statement

Step 08: boolean , Relational and Logical Operators

The Java boolean data type is one that holds only one of two values: true or false . Both labels are case-
sensitive. We have seen examples of built-in comparison operators, such as == , != and > , that evaluate
expressions to give us boolean results. Let us do a quick recap of some of these.

Snippet-01 : Relational Operators : Recap

Relational Operators are used mainly for comparison. They accept operands of non- boolean primitive data types,

and return a boolean value.

 jshell> int i = 7;
 i ==> 7
 jshell> i > 7;
 $1 ==> false
 jshell> i >= 7;
 $2 ==> true

 package ;
 import BigDecimal;

 public class SimpleInterestCalculatorRunner {
 BigDecimal principal;
 BigDecimal interest;

 public SimpleInterestCalculator(String principal, String interest) {
 this.principal = new BigDecimal(principal);
 this.interest = new BigDecimal(interest).divide(new BigDecimal(100));
 }

 public BigDecimal calculateTotalValue(int noOfYears)
 //Total Value = Principal + Principal * Interest* Years
 BigDecimal totalValue = prinipal.add(principal.multiply(interest).multiply(new BigDecimal
 return totalValue;`
 }
}

com.in28minutes.primitive.datatypes
java.math.

 jshell> i < 7;
 $3 ==> false
 jshell> i <= 7;
 $4 ==> true
 jshell> i == 7;
 $5 ==> true
 jshell> i == 8;
 $6 ==> false
 jshell>

Logical Operators

Java also has logical operators that are used in expressions. Logical operators expect boolean operands.

Expressions involving these are used for forming boolean conditions in code, including within if , for and

while statements. The prominent logical operators are:

&& : logical AND

|| : OR

! : NOT

Let's learn how we use them in our code.

Snippet-02 : Logical Operators

We would want to find if i is between 15 and 25 . An expression i >= 15 && i <= 25 can be used. Details

below.

 jshell> int i = 17;
 i ==> 17
 jshell> i >= 15
 $1 ==> true
 jshell> i <= 25
 $2 ==> true
 jshell> i >= 15 && i <= 25
 $3 ==> true
 jshell> i == 30;
 i ==> 30
 jshell> i >= 15 && i <= 25
 $4 ==> false
 jshell> i == 5;
 i ==> 30
 jshell> i >= 15 && i <= 25
 $5 ==> false

An expression with && evaluates to true only if both its boolean operands evaluate to true .

 jshell> true && true
 $6 ==> true
 jshell> true && false
 $7 ==> false
 jshell> false && true
 $8 ==> false
 jshell> false && false
 $9 ==> false
 jshell>

Snippet-02 Explained

The next example helps us visualize truth tables for the prominent logical operators.

 jshell> true || true
 $1 ==> true
 jshell> true || false
 $2 ==> true
 jshell> false || true
 $3 ==> true
 jshell> false || false
 $4 ==> false
 jshell> true ^ true
 $5 ==> false
 jshell> true ^ false
 $6 ==> true
 jshell> false ^ true
 $7 ==> true
 jshell> false ^ false
 $8 ==> false
 jshell> !true
 $9 ==> false
 jshell> !false
 $10 ==> true
 jshell> int x = 6;
 x ==> 6
 jshell> !(x > 7)
 $11 ==> true
 jshell>

Summary

In this step, we:

We're introduced to the boolean primitive type

Understood where logical operators are used in Java programs

Explored the truth-tables of commonly used logical operators

Step 09: Short-Circuit Evaluation (With Puzzles)

Consider code below. The expression j > 15 && i++ > 5 evaluates to false as expected. j>15 is false as j
has a value of 15 .

 jshell> int j = 15;
 j ==> 15
 jshell> int i = 10;
 i ==> 10
 jshell> j > 15 && i++ > 5
 $1 ==> false
 jshell> j
 j ==> 15
 jshell> i
 i ==> 10

You can also observe that the value of i remains unchanged 10 .

Why? Because i++ > 5 was not even evaluated. Why? && is lazy. It saw that j > 15 is false. Irrespective of the

result of second expression, the result of this && would be false. So, it does NOT evaluate the second expression.

A more detailed explanation

The expression j > 15 && i++ > 5 was scanned from left to right. As the first operand to && evaluated to

false , the compiler got lazy. && avoids evaluating expressions that don't affect the final result. The optimization

has a name: Short-Circuit Evaluation, also called lazy evaluation.

The logical operator & is another version of the logical AND operation, that does away with lazy evaluation.

Both operands to & are always evaluated.

 jshell> j > 15 & i++ > 5
 $1 ==> false
 jshell> j
 j ==> 15
 jshell> i
 i ==> 11
 jshell>

Similarly, the logical OR operator also has two versions:

The || operator we saw earlier. This exhibits lazy evaluation.

The | operator, without lazy evaluation.

It is bad programming practice for our code to depend on the compiler's lazy evaluation. It makes code less

readable, and can hide difficult-to-fix software bugs. It obviously adds to the code maintenance burden, so don't do

it unless you like being in your peers' bad books.

Summary

In this step, we:

Examined conditions involving logical operators, that had lazy evaluation

Observed that the lazy evaluation depends on the operator's truth-table

Saw versions of the operators without lazy evaluation

Learned that code depending on lazy-evaluation, is less readable

Step 10: Character Types

Earlier, we explored how we could store basic keyboard characters(called ascii-code characters), such as:

Upper-Case and lower-case letters (A-Z, a-z)

Numeric characters (0-9)

Punctuation and other special characters (such as ',', '$', '{', etc.)

Turns out Java supports a much larger family of character encoding sets, called Unicode. All Unicode characters

can be input to, understood and processed by, as well as output from your code.

Snippet-01 : Unicode characters

Not all Unicode characters can be input from your keyboard. But Java allows you to handle their values from your

code, if you deal correctly with their format.

 jshell> char ch = '"';
 ch ==> '"'
 jshell> char c = '\u0022';
 c ==> '"'

Integer values can be stored in char variables. If the value is within a meaningful range, it also corresponds to the

ascii value of a keyboard character.

 jshell> char cn = 65;
 cn ==> 'A'

Integer arithmetic can be performed on char data.

 jshell> cn++
 $1 ==> 'A'
 jshell> cn
 $2 ==> 'B'
 jshell> ++cn
 $3 ==> 'C'
 jshell> cn + 5
 $4 ==> 72
 jshell> cn
 cn ==> 'C'
 jshell> (int)cn
 cn ==> 67
 jshell>

Summary

In this step, we:

Were introduced the the char data type

Learned that Unicode takes the character set beyond your keyboard

An ascii character is char value, encoded by an integer value

Step 11: Programming Exercise PE-02

Exercise Set

�. Write a Java class MyChar that is a special type of char . An object of type MyChar is created round an input

char data element, and has operations that do the following:

Check if the input character is a:

Numeric Digit

Letter of the Alphabet

Vowel (Either upper-case or lower-case)

Consonant (Either upper-case or lower-case) NOTE: A letter is a consonant if not a vowel

Print all the letters of the Alphabet in

Upper-Case

Lower-Case

In Essence, a runner class for MyChar would have its main method run code similar to:

 MyChar myChar = new MyChar('c');
 System.out.println(myChar.isDigit());
 System.out.println(myChar.isAlphabet());
 System.out.println(myChar.isVowel());
 System.out.println(myChar.isConsonant());
 myChar.printLowerCaseAlphabets();
 myChar.printUpperCaseAlphabets();

Step 12: Solution To PE-02, Part 1 - isVowel()

MyCharRunner.java

 package ;

 public class MyCharRunner {

com.in28minutes.primitive.datatypes

 public static void main(String[] args) {
 MyChar myChar = new MyChar('c');
 System.out.println(myChar.isVowel());
 }
 }

MyChar.java

 package ;

 public class MyChar {
 private char ch;

 public MyChar(char ch) {
 this.ch = ch;
 }

 public boolean isVowel() {
 if(ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u') {
 return true;
 }
 if(ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U') {
 return true;
 }
 return false;
 }
 }

Console Output :

false

Step 13: Solution To PE-02, Part 2 - isDigit()

MyCharRunner.java

 package ;

 public class MyCharRunner {
 public static void main(String[] args) {
 MyChar myChar = new MyChar('c');
 System.out.println(myChar.isDigit());
 System.out.println(myChar.isVowel());
 }
 }

MyChar.java

 package ;

 public class MyChar {
 private char ch;

 public MyChar(char ch) {
 this.ch = ch;
 }

 public boolean isVowel() {
 if(ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u') {
 return true;

com.in28minutes.primitive.datatypes

com.in28minutes.primitive.datatypes

com.in28minutes.primitive.datatypes

 }

 if(ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U') {
 return true;
 }
 return false;
 }

 public boolean isDigit() {
 if(ch >= 48 && ch <= 57) {
 return true;
 }
 return false;
 }

}

Console Output :

false

false

Step 14: Solution To PE-02, Part 3 - Other Methods

MyCharRunner.java

 package ;

 public class MyCharRunner {
 public static void main(String[] args) {
 MyChar myChar = new MyChar('c');
 System.out.println(myChar.isDigit());
 System.out.println(myChar.isAlphabet());
 System.out.println(myChar.isVowel());
 System.out.println(myChar.isConsonant());
 myChar.printLowerCaseAlphabets();
 myChar.printUpperCaseAlphabets();
 }
 }

MyChar.java

 package ;

 public class MyChar {
 private char ch;

 public MyChar(char ch) {
 this.ch = ch;
 }

 public boolean isVowel() {
 if(ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u') {
 return true;
 }
 if(ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U') {
 return true;
 }
 return false;
 }

 public boolean isConsonant() {

com.in28minutes.primitive.datatypes

com.in28minutes.primitive.datatypes

 if(isAlphabet() && !(isVowel())) {
 return true;
 }
 return false;
 }

 public boolean isDigit() {
 if(ch >= 48 && ch <= 57) {
 return true;
 }
 return false;
 }

 public boolean isAlphabet() {
 if(ch >= 97 && ch <= 122) {
 return true;
 }
 if(ch >= 65 && ch <= 90) {
 return true;
 }
 return false;
 }

 public void printLowerCaseAlphabets() {
 for(char ch='a'; ch <= 'z'; ch++) {
 System.out.println(ch);
 }
 }

 public void printUpperCaseAlphabets() {
 for(char ch='A'; ch <= 'Z'; ch++) {
 System.out.println(ch);
 }
 }
 }

Console Output :

false

true

false

true

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Step 15: The Primitive Types - A Review

In this section, we built on our knowledge of the primitive Java types.

We first got familiar with built-in wrappers for the integer types, that store useful type information.

Going from the integer to the floating-point types, we examined type compatibility, and how the compiler warns

you about common pitfalls. We used explicit casts to force type conversions, and learned that implicit type

conversions are quite common.

We moved on to the BigDecimal class, a floating-point type with greater precision and accuracy.

Next in line was boolean , where we built on what we know of logical expressions. We focused on the logical

operators, more so on short-circuit evaluation of their expressions.

We saw how dependency on side-effects, and on lazy evaluation, is not a good programming practice.

Finally, we got to the char type, and were pleasantly surprised to know, that the keyboard is not the limit.

Introducing Conditionals - if, switch and more

Decision making is a part of our daily lives. Computers do tasks for humans, so even programs need to make

decisions. They do this by checking logical conditions, which evaluate to boolean values.

In the following steps, we will explore the following conditional statements:

if

if - else

if - else if - else

switch

What better way to master these basics, than using them to solve a programming challenge?

Here we go!

Programming Challenge : Design A Menu (The Menu-Challenge)

Ask the User for input:

Enter two numbers

Choose the arithmetic to do on those:

Add

Subtract

Multiply

Divide

Perform the Operation

Publish the Result

An example scenario could be:

Enter First Number

2

Enter Second Number

4

1 - Add

2 - Subtract

3 - Multiply

4 - Divide

Enter your choice of operation

3

The Result Is : 8

Summary

In this step, we:

Discussed how input affects the control-flow of a program

Listed out the conditionals available with Java

Selected a programming challenge to help us learn about conditions

Step 01: The if and if - else Conditionals

An if statement is the most basic way to manage control-flow in a program. A boolean condition is tested, and if

found to be true , some code is executed. Otherwise, that code is not run.

"Do Something when condition is true "

Conceptually, the if statement looks like this:

 if(condition) {
 <if-body>
 }

An if - else statement improves over the plain if . We can now choose between executing two pieces of code,

depending on what condition evaluates to.

"Do Something when condition is true , something else when condition is false "

An if - else statement boils down to the following:

 if(condition) {
 <if-body>
 } else {

 <else-body>
 }

If condition is found to be true , the statement block <if-body> is executed, otherwise <else-body> is run.

Let's now look at a examples that make use of these conditionals.

Snippet-01 : if behavior

In this example:

we have used compound comparison operators such as <= and >= , which also evaluate to boolean values.

Also used, are logical operators such as && and || , which both accept and return values of type boolean .

 jshell> int i = 3;
 i ==> 3
 jshell> if(i==3) {
 ..>> System.out.println("True");
 ..>> }
 True
 jshell> if(i<2) {
 ..>> System.out.println("True");
 ..>> }

 jshell> if(i<=3 || i >= 35) {
 ..>> System.out.println("True");
 ..>> }
 True
 jshell> if(i<=3 && i >= 35) {
 ..>> System.out.println("True");
 ..>> }

if - else allows us to specify code to execute when a condition is false .

 jshell> if(i==3) {
 ..>> System.out.println("True");
 ..>> } else {
 ..>> System.out.println("i is not 3");
 ..>> }
 True
 jshell> i = 5;
 i ==> 5
 jshell> if(i==3) {
 ..>> System.out.println("True");
 ..>> } else {
 ..>> System.out.println("i is not 3");
 ..>> }
 i is not 3
 jshell>

Snippet-02 : chained if - else - v1

IfStatementRunner.java

 com.in28minutes.ifstatement.examples;

 public class IfStatementRunner {
 public static void main(String[] args) {
 //int i=25;
 int i=26;
 if(i == 25) {

 System.out.println("i = 25");
 } else {
 System.out.println("i != 25");
 }
 }
 }

Console Output

i != 25

Snippet-03 : chained if-else v2

We would want to test a number for 3 conditions - value is 24 , value is 25 or value is not 24 and 25 . Let's
consider the code from the example below.

IfStatementRunner.java

 com.in28minutes.ifstatement.examples;

 public class IfStatementRunner {
 public static void main(String[] args) {
 // if i is 25, print i = 25
 //if i is 24, print i = 24
 //otherwise, print i != 25 and i != 24

 int i=25;
 if(i == 25) {
 System.out.println("i = 25");
 }
 if(i == 24) {
 System.out.println("i = 24");
 } else {
 System.out.println("i != 25 and i != 24");
 }
 }
 }

Console Output

i = 25

i != 25 and i != 24

Snippet-03 Explained

What just happened here? The value of i is set to 25 within the program, so like in the previous example, only i =

25 should have been printed.

Why the extra print?

We started off trying to check fro 3 possibilities: * i being equal to 25 * i being equal to 24 * Neither of the

above

We get wrong output, because i == 25 in first if is independent from i == 24 in the if - else that follows it.

Our decision making is not continuous. We need a tighter conditional to deal with more than two alternatives. We

will explore this topic in the next step.

Summary

In this step, we:

Learned about the if and if - else conditionals

Tried out a few examples to see how they are used

Step 02: The if - else if - else Conditional

The if - else if - else statement solves the issue we faced, while trying to test more than two conditions.

Let's see an example.

Snippet-01 : Matching The if Clause

IfStatementRunner.java

 com.in28minutes.ifstatement.examples;

 public class IfStatementRunner {
 public static void main(String[] args) {
 // if i is 25, print i = 25
 //if i is 24, print i = 24
 //otherwise, print i != 25 and i != 24

 int i=25;
 if(i == 25) {
 System.out.println("i = 25");
 } else if(i == 24) {
 System.out.println("i = 24");
 } else {
 System.out.println("i != 25 and i != 24");
 }
 }
 }

Console Output

i = 25

Let's now try giving i a different value, say 24 .

Snippet-02: Matching The else if Clause

IfStatementRunner.java

 com.in28minutes.ifstatement.examples;

 public class IfStatementRunner {
 public static void main(String[] args) {
 // if i is 25, print i = 25
 //if i is 24, print i = 24
 //otherwise, print i != 25 and i != 24

 //int i=25;
 int i=24;
 if(i == 25) {
 System.out.println("i = 25");
 } else if(i == 24) {
 System.out.println("i = 24");
 } else {
 System.out.println("i != 25 and i != 24");
 }
 }
 }

Console Output

i = 24

Snippet-02 Explained

With i holding 24 , a different condition (the one coresponding to i == 24) evaluates to true .

Let's now try to get a match with the else clause, the only one unexplored so far.

Snippet-03: Matching The else Clause

IfStatementRunner.java

 com.in28minutes.ifstatement.examples;

 public class IfStatementRunner {
 public static void main(String[] args) {
 // if i is 25, print i = 25
 //if i is 24, print i = 24
 //otherwise, print i != 25 and i != 24

 //int i=24;
 int i=26;
 if(i == 25) {
 System.out.println("i = 25");
 } else if(i == 24) {
 System.out.println("i = 24");
 } else {
 System.out.println("i != 25 and i != 24");
 }
 }
 }

Console Output

i != 25 and i != 24

Snippet-03 Explained

When i is given a value of 26 , the first two conditions are false. Hence, the code in the else gets executed.

one, and only one clause among those present in an if - else if - else statement ever evaluates to true . Also,

the code block corresponding to the matched clause will get executed. This is ensured even if conditions are

duplicated, or overlap. In that scenario, only the first such condition, downward from the if in sequence, will

evaluate to true . The remaining possible matches are not even checked.

Summary

In this step, we:

Learned about the if - else if - else conditional

Found out how to test when each different clause gets executed

Understood the guarantees made by Java regarding the conditional's code execution

Step 03: Puzzles on if

Try and guess the outputs of the following puzzles.

Programming Puzzle PP-01

 public class puzzleRunner {

 public static void main(String[] args) {
 puzzleOne();
 }

 public static void puzzleOne() {
 int k = 15;
 if(k > 20) {
 System.out.println(1);
 } else if(k > 10) {
 System.out.println(2);
 } else if(k < 20) {
 System.out.println(3);
 } else {
 System.out.println(4);
 }
 }
 }

Answer:

2

Programming Puzzle PP-02

 public class puzzleRunner {
 public static void main(String[] args) {
 puzzleTwo();
 }

 public static void puzzleTwo() {
 int l = 15;
 if(l < 20)
 System.out.println("l < 20");
 if(l > 20)
 System.out.println("l > 20");
 else
 System.out.println("Who Am I?");
 }
 }

Answer:

l < 20

Who Am I?

Programming Puzzle PP-03

 public class puzzleRunner {
 public static void main(String[] args) {
 puzzleThree();
 }

 public static void puzzleThree() {
 int m = 15;
 if(m > 20)
 if(m < 20)
 System.out.println("m > 20"); else
 System.out.println("Who Am I?");

 }
 }

Answer:

Nothing is printed. Because the code is structured this way.

if(m > 20) {
 if(m < 20)
 System.out.println("m > 20");
 else
 System.out.println("Who Am I?");
}

Programming Puzzle PP-04

 jshell> int i = 0;
 i ==> 3
 jshell> if(i) {
 ..>> System.out.println("i");
 ..>> }
 | Error:
 | incompatible types: int cannot be converted to boolean
 | if(i)
 |____^
 jshell> if(i=1) {
 ..>> System.out.println("i");
 ..>> }
 | Error:
 | incompatible types: int cannot be converted to boolean
 | if(i=1)
 |____^-^
 jshell> if(i==1) {
 ..>> System.out.println("i");
 ..>> }
 jshell>

Answer:

Compiler Error

Programming Puzzle PP-05

 public class puzzleRunner {
 public static void main(String[] args) {
 puzzleFive();
 }

 public static void puzzleFive() {
 int number = 5;
 if(number < 0)
 number = number + 10;
 number++;
 System.out.println(number);
 }
 }

**Answer : **

6

In the absence of explicit blocks, Only the statement next to the if statement is considered to be part of the if

statement block.

Step 04: Reading User Input

Look at the statement of Menu-Challenge once again:

Menu-Challenge

Ask the User for input:

Enter two numbers

Choose an Arithmetic Operation to perform on them:

Add

Subtract

Multiply

Divide

Perform the Operation

Publish the Result

We have a good idea about how the if - else if - else conditional works.What we don't know, however, is how a

such a conditional would behave when fed with random input. To test those scenarios out, the next step would be

to learn how to take console input, from within our code.

We will do just that, in our next example.

Snippet-01: Reading console input

Java provides a built-in class named Scanner , to scan user input from the console. Roping in this utility would

require you, the programmer, to do the following:

import the java.util.Scanner class within your code (here, we were writing code in the Eclipse IDE)

Create a scanner object which is of type Scanner . This involves invoking the Scanner constructor through

the new operator. You also need to pass System.in as a constructor parameter, which ties scanner to the

console input.

To read integer input from the console, call the method scanner.nextInt() . The keyboard's key needs to be
pressed to complete user input. That number is passed on to your code, where it can be passed around.

MenuScanner.java

 package ;
 import Scanner;

 public class MenuRunner {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter Number1: ");
 int number1 = Scanner.nextInt();
 System.out.println("The number you entered is: " + number1);
 }
 }

Console Output

Enter Number1: 35

The number you entered is: 35

com.in28minutes.ifstatement.examples
java.util.

Summary

In this step, we:

Revisited our Menu-Challenge problem statement, and found we needed to read user input

Explored the basic usage of the Scanner utility to fulfill this need

Step 05: Menu-Challenge : Reading More Input

The Menu-Challenge does not stop at a single user input. It requires a total of three numbers to be typed in at the

console. So how do we continue asking for input, and read them when they are given?

Snippet-01 : Implementing Menu-Challenge

MenuScanner.java

 package ;
 import Scanner;

 public class MenuRunner {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter Number1: ");
 int number1 = Scanner.nextInt();
 System.out.print("Enter Number2: ");
 int number2 = Scanner.nextInt();

 System.out.println("Select The Operation Choice");
 System.out.println("1 - Add");
 System.out.println("2 - Subtract");
 System.out.println("3 - Multiply");
 System.out.println("4 - Divide");
 System.out.print("Enter Choice: ");
 int choice = Scanner.nextInt();

 System.out.print("Your Inputs Are:");
 System.out.println("Number1: " + number1);
 System.out.println("Number2: " + number2);
 System.out.println("Choice: " + choice);
 }
 }

Console Output

Enter Number1: 25

Enter Number2: 50

Operation Choices Available

1 - Add

2 - Subtract

3 - Multiply

4 - Divide

Enter Choice: 4

Your Inputs Are

Number1: 25

com.in28minutes.ifstatement.examples
java.util.

Number2: 50

Choice: 4

Snippet-01 Explained

Repeatedly calling scanner.nextInt() will keep reading in any number the user may input. Also, the user needs to

press the keyboard key to send each input.

We were not only able to read in all three values we need, but also wrote them out on the console. The user can now

see that we got his data!

Summary

In this step, we:

Figured out how to read more than one input from the console

Demonstrated how values read in, can be preserved and used within the program

Step 06: Menu-Challenge - Reading Input, Computing Result, Displaying Output

We don't think that after the previous step, anything can stop you from completing the Menu-Challenge. Here is

one such way, from head-to-toe.

Snippet-01 : All computations

Our solution above does a very simple thing. It combines the mechanisms we learned for reading input and testing

conditions, to solve Menu-Challenge.

The if - else - else if statement has a total of 5 clauses:

To check for 4 favorable conditions (The choice values for the 4 supported operations). One if and three

else - if clauses do the stuff for us.

the last default condition, which corresponds to a choice value not supported, is handled by an else clause.

MenuScanner.java

package ;
import Scanner;

public class MenuRunner {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter Number1: ");
 int number1 = Scanner.nextInt();
 System.out.print("Enter Number2: ");
 int number2 = Scanner.nextInt();

 System.out.println("Select The Operation Choice");
 System.out.println("1 - Add");
 System.out.println("2 - Subtract");
 System.out.println("3 - Multiply");
 System.out.println("4 - Divide");
 System.out.print("Enter Choice: ");
 int choice = Scanner.nextInt();

 System.out.print("Your Inputs Are:");
 System.out.println("Number1: " + number1);
 System.out.println("Number2: " + number2);
 System.out.println("Choice: " + choice);

 if(choice == 1) {

com.in28minutes.ifstatement.examples
java.util.

 System.out.println("Result = " + (number1 + number2));
 } else if(choice == 2) {
 System.out.println("Result = " + (number1 - number2));
 } else if(choice == 3) {
 System.out.println("Result = " + (number1 * number2));
 } else if(choice == 4) {
 System.out.println("Result = " + (number1 / number2));
 } else {
 System.out.println("Invalid Operation");
 }
 }
}

Console Output

Enter Number1: 23

Enter Number2: 10

Operation Choices Available

1 - Add

2 - Subtract

3 - Multiply

4 - Divide

Enter Choice: 2

Your Inputs Are

Number1: 23

Number2: 10

Choice: 2

Result = 13

Console Output

Enter Number1: 25

Enter Number2: 35

Operation Choices Available

1 - Add

2 - Subtract

3 - Multiply

4 - Divide

Enter Choice: 5

Your Inputs Are

Number1: 23

Number2: 10

Choice: 5

Invalid Operation

Summary

In this step, we:

Combined our knowledge of conditionals, with our recent learning on taking multiple console inputs

Ultimately solved the Menu-Challenge problem

Step 07: Introducing switch

If you remember, our initial list of conditionals to manage control-flow, also had a switch statement. A switch
also tests multiple conditions, and just like an else clause, it can handle the default possibility. Conceptually, a

switch statement looks like the following:

 switch(condition) {
 case 1:
 //<statements>
 break;
 case 2:
 //<statements>
 break;
 //...
 default:
 //<statements>
 break;
 }
 }

default clause is executed when none of the cases match.

break; statement is used to break out of the switch after a successful match.

Let's look at a few examples on how to use switch .

Snippet-01: The switch statement

Using a switch leads to code that is quite readable, doesn't it? Compare it with the chained if - else if - else
statements we used in the previous step.

Leaving out the break statement from every case clause is a very common error. It leads to a situation called

switch-fall-through. Here, even if there is a match with a particular case clause, all clauses following this one are

executed in sequence, until a break is encountered somewhere!

 jshell> int i = 5;
 i ==> 5
 jshell> switch(i) {
 ..>> case 1 : System.out.println("1");
 ..>> case 5 : System.out.println("5");
 ..>> default : System.out.println("default");
 ..>> }
 5
 default
 jshell> i = 1;
 i ==> 1
 jshell> switch(i) {
 ..>> case 1 : System.out.println("1");
 ..>> case 5 : System.out.println("5");

 ..>> default : System.out.println("default");
 ..>> }
 1
 5
 default

Adding break s ensures that only the matching case is executed.

 jshell> switch(i) {
 ..>> case 1 : System.out.println("1"); break;
 ..>> case 5 : System.out.println("5"); break;
 ..>> default : System.out.println("default"); break;
 ..>> }
 1
 jshell>

Snippet-02: refactoring MenuScanner

Let's now refactor the MenuScanner example to use switch statement.

MenuScanner.java

package ;
import Scanner;

public class MenuRunner {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter Number1: ");
 int number1 = Scanner.nextInt();
 System.out.print("Enter Number2: ");
 int number2 = Scanner.nextInt();

 System.out.println("Select The Operation Choice");
 System.out.println("1 - Add");
 System.out.println("2 - Subtract");
 System.out.println("3 - Multiply");
 System.out.println("4 - Divide");
 System.out.print("Enter Choice: ");
 int choice = Scanner.nextInt();

 System.out.print("Your Inputs Are:");
 System.out.println("Number1: " + number1);
 System.out.println("Number2: " + number2);
 System.out.println("Choice: " + choice);

 //performOperationUsingChainedIfElse(number1, number2, choice);`
 performOperationUsingSwitch(number1, number2, choice);
 }

 public static void performOperationUsingSwitch(int number1, int number2, int choice) {
 switch(choice) {
 case 1 : System.out.println("Result = " + (number1 + number2)); break;
 case 2 : System.out.println("Result = " + (number1 - number2)); break;
 case 3 : System.out.println("Result = " + (number1 * number2)); break;
 case 4 : System.out.println("Result = " + (number1 / number2)); break;
 default : System.out.println("Invalid Operation"); break;
 }
 }

 public static void performOperationUsingChainedIfElse(int number1, int number2, int choice) {
 if(choice == 1) {
 System.out.println("Result = " + (number1 + number2));
 } else if(choice == 2) {

com.in28minutes.ifstatement.examples
java.util.

 System.out.println("Result = " + (number1 - number2));
 } else if(choice == 3) {
 System.out.println("Result = " + (number1 * number2));
 } else if(choice == 4) {
 System.out.println("Result = " + (number1 / number2));
 } else {
 System.out.println("Invalid Operation");
 }
 }
}

Console Output

Enter Number1: 23

Enter Number2: 10

Operation Choices Available

1 - Add

2 - Subtract

3 - Multiply

4 - Divide

Enter Choice: 2

Your Inputs Are

Number1: 23

Number2: 10

Choice: 2

Result = 13

Console Output

Enter Number1: 25

Enter Number2: 35

Operation Choices Available

1 - Add

2 - Subtract

3 - Multiply

4 - Divide

Enter Choice: 5

Your Inputs Are

Number1: 23

Number2: 10

Choice: 5

Invalid Operation

Summary

In this step, we:

Explored the switch conditional

Saw how it could implement the same control-flow as the if family of conditionals

Learned the importance of coding it correctly, to enjoy Java control-flow guarantees

Puzzles On switch

Let's now have some fun with the various conditionals. These puzzles will not only ensure you're still wide awake,

they will also give you ample food for thought.

Programming Puzzle PP-01

 public class SwitchPuzzleRunner {
 public static void main(String[] args) {
 puzzleOne();
 }

 public static void puzzleOne() {
 int number = 2;
 switch(number) {
 case 1:
 System.out.println(1);
 case 2:
 System.out.println(2);
 case 3:
 System.out.println(3);
 default:
 System.out.println("default");
 }
 }
 }

Answer:

2

3

default

Programming Puzzle PP-02

 public class SwitchPuzzleRunner {
 public static void main(String[] args) {
 puzzleTwo();
 }

 public static void puzzleTwo() {
 int number = 2;
 switch(number) {
 case 1:
 System.out.println(1);
 case 2:
 case 3:
 System.out.println("Number is 2 or 3");
 break;

 default:
 System.out.println("default");
 break;
 }
 }
 }

Answer:

Number is 2 or 3

Programming Puzzle PP-03

 public class SwitchPuzzleRunner {
 public static void main(String[] args) {
 puzzleThree();
 }

 public static void puzzleThree() {
 int number = 10;
 switch(number) {
 case 1:
 System.out.println(1);
 break;
 case 2:
 System.out.println(2);
 break;
 case 3:
 System.out.println(3);
 break;
 default:
 System.out.println("default");
 break;
 }
 }
 }

Answer:

default

Programming Puzzle PP-04

 public class SwitchPuzzleRunner {
 public static void main(String[] args) {
 puzzleFour();
 }

 public static void puzzleFour() {
 int number = 10;
 switch(number) {
 System.out.println("default");
 break;
 case 1:
 System.out.println(1);
 break;
 case 2:
 System.out.println(2);
 break;
 case 3:
 System.out.println(3);
 break;
 default:

 }
 }
 }

Answer:

default

Programming Puzzle PP-05

 public class SwitchPuzzleRunner {
 public static void main(String[] args) {
 puzzleFive();
 }

 public static void puzzleFive() {
 long l = 15;
 switch(l) {
 }
 }
 }

Answer:

Compiler Error

Programming Puzzle PP-06

 public class SwitchPuzzleRunner {
 public static void main(String[] args) {
 puzzleSix();
 }

 public static void puzzleSix() {
 int number = 10;
 int i = number * 2;
 switch(number) {
 case number>5 : System.out.println("number>5");
 }
 }
 }

Answer:

Compiler Error

Step 09: Comparing The if Family, And switch

Let's compare and contrast these two approaches, to gain some experience on how to choose a conditional.

First comes an example using the if - else if - else statement.

Snippet-01 : Formatted Output Using if

OperatorChoiceRunner.java

 package ;

 public class OperatorChoiceRunner {

com.in28minutes.ifstatement.examples

 public static void main(String[] args) {
 OperatorChoice opChoice = new OperatorChoice(5, 2, 1);
 opChoice.operate();
 }
 }

OperatorChoice.java

 package ;

 public class OperatorChoice {
 private int number1;
 private int number2;
 private int choice;

 public OperatorChoice(int number1, int number2, int choice) {
 this.number1 = number1;
 this.number2= number2;
 this.choice = choice;
 }

 public void operate() {
 System.out.printf("number1 : %d", number1).println();
 System.out.printf("number2 : %d", number2).println();
 System.out.printf("choice : %d", choice).println();

 if(choice == 1) {
 System.out.printf("result : %d", number1 + number2).println();
 } else if(choice == 2) {
 System.out.printf("result : %d", number1 - number2).println();
 } else if(choice == 3) {
 System.out.printf("result : %d", number1 * number2).println();
 } else if(choice == 4) {
 System.out.printf("result : %d", number1 / number2).println();
 } else {
 System.out.println("Invalid Operation");
 }
 }
 }

Console Output

number1 : 5

number2 : 2

choice : 1

result : 7

Next in line, is an example involving a switch .

Snippet-02 : Formatted Output Using switch

OperatorChoiceRunner.java

 package ;

 public class OperatorChoiceRunner {
 public static void main(String[] args) {
 OperatorChoice opChoice = new OperatorChoice(5, 2, 1);
 opChoice.operateUsingSwitch();

com.in28minutes.ifstatement.examples

com.in28minutes.ifstatement.examples

 }
 }

OperatorChoice.java

 package ;

 public class OperatorChoice {
 private int number1;
 private int number2;
 private int choice;

 public OperatorChoice(int number1, int number2, int choice) {
 this.number1 = number1;
 this.number2= number2;
 this.choice = choice;
 }

 public void operateUsingSwitch() {
 System.out.printf("number1 : %d", number1).println();
 System.out.printf("number2 : %d", number2).println();
 System.out.printf("choice : %d", choice).println();

 switch(choice) {
 case 1: System.out.printf("result : %d", number1 + number2).println();
 break;
 case 2: System.out.printf("result : %d", number1 - number2).println();
 break;
 case 3: System.out.printf("result : %d", number1 * number2).println();
 break;
 case 4: System.out.printf("result : %d", number1 / number2).println();
 break;
 default: System.out.printf("result : %d", number1 + number2).println();
 break;
 }
 }
 }

Console Output

number1 : 5

number2 : 2

choice : 1

result : 7

Summary

In this step, we:

Observed that the same conditional code could be written using an if -family conditional, or the switch .

Learned that an if family conditional is difficult to get wrong, as the rules for it are very strict. It can be used

to evaluate only boolean conditions. But it is verbose, and often less readable.

Came to know that a switch conditional can be used to check for only integer values. It is very compact, and

very readable. However, the relative order of case clauses and default are not fixed, and the usage of

break is optional. This can lead to subtle errors in your program.

Step 10: Programming Exercise PE-03

�. Write a Java class which has the following operations within it:

com.in28minutes.ifstatement.examples

Given a number between 0 (Sunday) and 6 (Saturday), return if the day is a Weekday

Given a number between 1 (January) and 12 (December), return the corresponding English name for that

month

Given a number between 1 (January) and 12 (December), return the corresponding English name for that

day of the week

Solution to PE-03

CalendarSwitchRunner.java

 package ;

 public class CalendarSwitchRunner {
 public static void main(String[] args) {
 System.out.println(determineNameOfDay(1));
 System.out.println(isWeekDay(1));
 System.out.println(determineMonthOfYear(1));
 }

 public String determineNameOfDay(int dayNumber) {
 switch(dayNumber) {
 case 0 : return "Sunday";
 break;
 case 1 : return "Monday";
 break;
 case 2 : return "Tuesday";
 break;
 case 3 : return "Wednesday";
 break;
 case 4 : return "Thursday";
 break;
 case 5 : return "Friday";
 break;
 case 6 : return "Saturday";
 break;
 default : return "Invalid Day";
 break;
 }
 }

 public String determinenameofMonth(int monthNumber) {
 switch(monthNumber) {
 case 1 : return "January";
 case 2 : return "February";
 case 3 : return "March";
 case 4 : return "April";
 case 5 : return "May";
 case 6 : return "June";
 case 7 : return "July";
 case 8 : return "August";
 case 9 : return "September";
 case 10 : return "October";
 case 11 : return "November";
 case 12 : return "December";
 default : return "Invalid Month";
 }
 }

 public boolean isWeekDay(int dayNumber) {
 switch(dayNumber) {
 case 1 :
 case 2 :
 case 3 :
 case 4 :
 case 5 : return true;

com.in28minutes.ifstatement.examples

 case 0 :
 case 6 :
 default : return false;
 }
 }
 }

Step 12: Introducing ?: , The Ternary Operator

The ternary operator ?: is a logical operator, that works on three operands. Its functioning is similar to an if -
else statement (Checking for just 2 conditions). Exactly one of the two expressions is guaranteed to match.

Conceptually, its syntax is this:

result = (condition ? expression-if-condition-true : expression:if-condition-false);

Snippet-01 : ternary operator

?: is easy to use. A few examples below:

 jshell> boolean isEven;
 isEven ==> false
 jshell> int i = 6;
 jshell> isEven = (i%2==0 ? true : false);
 isEven ==> true
 jshell> i = 7;
 i ==> 7
 jshell> isEven = (i%2==0 ? true : false);
 isEven ==> false

You can return non boolean values.

 jshell> String ifEven = (i%2==0 ? "YES" : "NO");
 ifEven ==> "NO"
 jshell> i = 6;
 i ==> 6
 jshell> ifEven = (i%2==0 ? "YES" : "NO");
 ifEven ==> "YES"

Both the expressions should return value of same type.

 jshell> ifEven = (i%2==0 ? "YES" : 4);
 | Error:
 | incompatible types: bad type in conditional expression
 | int cannot be converted to String
 | ifEven = (i%2==0 ? "YES" : 4);
 |_____________________________^
 jshell> ifEven = (i%2==0 ? "YES" : true);
 | Error:
 | incompatible types: bad type in conditional expression
 | boolean cannot be converted to String
 | ifEven = (i%2==0 ? "YES" : true);
 |_____________________________^
 jshell>

Summary

In this step, we:

java.lang.

java.lang.

Discovered a more compact Java conditional, the ?: operator

Saw that in most cases it behaves like an if - else construct

Loops

TODO

Revisiting Java loop constructs: for and while

If you may recall, the structure of a for loop is:

for(initialization; condition; update) {

 //<Statements Body>

}

The <Statements Body> inside the loop is executed so long as the condition is true . Let's look at a few puzzles

to explore how we can utilize them.

Snippet 1 : First for loop puzzle

jshell> for(int i=0; i <= 10; i++) {

__**...>>** System.out.print(i + " ");

__**...>>** }

0 1 2 3 4 5 6 7 8 9 10

jshell> for(int i=0; i <= 10; i = i+2) {

__**...>>** System.out.print(i + " ");

__**...>>** }

0 2 4 6 8 10

jshell> for(int i=1; i <= 10; i = i+2) {

__**...>>** System.out.print(i + " ");

__**...>>** }

1 3 5 7 9

jshell> for(int i=11; i <= 10; i = i+2) {

__**...>>** System.out.print(i + " ");

__**...>>** }

jshell> for(int i=11; i <= 20;) {

__**...>>** System.out.print(i + " ");

__**...>>** i++;

__**...>>** }

11 12 13 14 15 16 17 18 19 20

jshell> int i = 20;

i ==> 20

jshell> for(i <= 30; i++) {

__**...>>** System.out.print(i + " ");

__**...>>** }

21 22 23 24 25 26 27 28 29 30

jshell>

Snippet-1 Explained

All the three control components of a for loop are dispensable

initialziation

condition

update

Reference Types

Step 01: Introducing Reference Types

What happens in the background when we create objects?

 jshell> class Planet {
 ..>>}
 | created class Planet
 jshell> Planet jupiter = new Planet();
 jupiter ==> Planet@31a5c39e

Where is the object jupiter stored?

All Java objects are created on the Heap or Heap Memory .

When we create an new instance of `Planet', it is created on the Heap.

 jshell> new Planet()
 $18 ==> Planet@3f49dace

new Planet() creates an object on the Heap. In above example Planet@3f49dace , the object is stored on the
Heap at address 3f49dace .

 jshell> Planet jupiter = new Planet();
 jupiter ==> Planet@31a5c39e

Planet jupiter = new Planet() does two things.

Creates an object on the Heap new Planet() . In above example, object is created at Heap location 31a5c39e

Stores the reference of the object on the Heap in a variable jupiter . In above example, 31a5c39e is the value

stored in variable jupiter . That's the memory location where the new object was created.

Let's consider another example.

 jshell> class Animal {
 ..>> int id;
 ..>> public Animal(int id) {
 ..>> this.id = id;
 ..>> }
 ..>> }
 | created class Animal
 jshell> Animal dog = new Animal(12);
 dog ==> Animal@27c20538
 jshell> Animal cat = new Animal(15);
 cat ==> Animal@6e06451e
 jshell>

Two new Animal objects are created on the Heap . Their memory locations (references) are stored in the
reference variables - dog and cat .

In Java, all classes are also called Reference Types. Except for primitive variable instances, all the instances or

objects are stored on the Heap. The references to the objects are stored in the reference variables like jupiter ,
dog and cat .

Summary

In this step, we:

Looked at what references are

Had a look at what the contents of a reference variable look like

Step 02: References: Usage And Puzzles

Let's spend some time playing with reference variables.

References that are not initialized by the programmer, are initialized by the Java compiler to null . null is a

special value that stands for an empty location. In other words, the Animal nothing refers to nothing!

 jshell> class Animal {
 ..>> int id;
 ..>> public Animal(int id) {
 ..>> this.id = id;
 ..>> }
 ..>> };
 | created class Animal
 jshell> Animal nothing;
 nothing ==> null

Assigning the reference cat to nothing does what one would expect: it assigns the address of the object created

with new Animal(15) (stored in cat), to the variable nothing .

 jshell> Animal dog = new Animal(12);
 dog ==> Animal@27c20538
 jshell> Animal cat = new Animal(15);
 cat ==> Animal@6e06451e_

 jshell> nothing = cat;
 nothing ==> 6e06451e

nothing and cat are pointing to the same location on the 'Heap'. When we do nothing.id = 10 we are

changing the id of the object pointed to by both nothing and cat .

 jshell> nothing.id = 10;
 $1 => 10
 jshell> cat.id
 $2 => 10

Let's change nothing to point to the same object referenced by dog .

 jshell> nothing = dog;
 dog ==> 27c20538
 jshell> nothing.id;
 $3 => 12
 jshell>

You can nothing.id prints the value of the object referenced by dog because they are pointing to the same

object.

Here are couple of important things to note:

nothing = dog - Assignment between references does not copy the entire referenced object. It only copies

the reference. After an assignment, both reference variables point to the same object.

nothing.id = 10 - References can be used to modify the objects they reference.

Comparing Reference Variables

Let's look at an example.

With primitive variables, assignment copies values.

 jshell> int i =5;
 i ==> 5
 jshell> int j;
 j ==> 0
 jshell> j = i;
 j ==> 5
 jshell> j = 6;
 j ==> 6
 jshell> i;
 i ==> 5

j = i copies the value of i into j . Later, when value of j is changed, i is not affected.

Comparing primitive variables compares their values.

 jshell> i == j;
 $4 ==> false
 jshell> j = 5;
 j ==> 5
 jshell> i == j;
 $5 ==> true

Let's create a few reference variables.

 jshell> Animal dog = new Animal(12);
 dog ==> Animal@4b952a2d
 jshell> Animal cat = new Animal(10);
 cat ==> Animal@3159c4b8
 jshell> Animal ref = cat;
 ref ==> Animal@3159c4b8

 jshell> Animal dog2 = new Animal(12);
 dog ==> Animal@29ca901e_

When we compare reference variables, we are still comparing values. But the values are references - the address of

memory locations where objects are stored. The values stored inside the referenced objects are not used for

comparison.

Both cat and ref reference a single Animal object created using new Animal(10) . == returns true

 jshell> cat == dog;
 $6 ==> false
 jshell> cat == ref;
 $7 ==> true

The comparison dog == dog2 evaluates to false since the references i.e. memory locations pointed by these

variables are different. They have the same values for id field (12). But, that is not important!

 jshell> dog == dog2;
 $8 ==> false
 jshell>

Summary

In this step, we:

Understood the way reference variables behave during initialization and assignment

Saw the relevance of a null value for references

Observed how equality of references, is different from equality of values of primitive types

Step 03: Introducing String

A sequence of characters, such as "Hello" , "qwerty" and "PDF" is very different from other pieces of data.

In Java, a sequence of characters is typically represented by String class .

String provides several built-in utility methods.

Let's look at a few examples.

 jshell> "Test".length()
 $1 ==> 4

"Test" is a string literal, so the compiler internally creates an object, gives it the type String and allocates

memory for it. Since length() is a method of String , it can be invoked on this "Test" object.

In the example below, str is a reference to a String object, containing the value "Test" . Creating a String
object is an exception to how we typically create objects in Java. You don't need to make a String constructor

call. Contrast this with how we would create a BigDecimal object.

 jshell> String str = "Test";
 str ==> "Test"
 jshell> BigDecimal bd = new BigDecimal("1.0");
 bd ==> 1.0

String indexes, like those of arrays, start at 0 . The charAt(int) method takes an index value as its argument, and

returns the character symbol present at that index.

 jshell> str.charAt(0)
 $2 ==> 'T'
 jshell> str.charAt(2)
 $3 ==> 's'
 jshell> str.charAt(3)
 $4 ==> 't'

The substring() method returns a String reference, and has overloaded versions:

The substring(int, int) method returns the sequence of character symbols starting at the lower index, and

ending just before the upper index.

The substring(int) method returns the sequence of character symbols starting from the index to end of

string.

 jshell> String biggerString = "This is a lot of text";
 biggerString ==> "This is a lot of text"
 jshell> biggerString.substring(5)
 $5 ==> "is a lot of text"
 jshell> biggerString.substring(5, 13)
 $6 ==> "is a lot"
 jshell> biggerString.charAt(13)
 $7 ==> ' '
 jshell>

Summary

In this step, we:

Were introduced to the String class, that represents sequences of characters

Explored a few utility methods of the String class

Step 04: Programming Exercise PE-01, And String Utilities

Exercise

�. Write a method to print the individual characters of a given text string, separately.

Solution To PE-01

 jshell> String text = "Equation";
 ..>> for (int i=0; i < text.length(); i++) {
 ..>> System.out.println(text.charAt(i));
 ..>> }
 E
 q
 u
 a
 t
 i
 o
 n
 jshell>

Common String Utilities

The String class is part of the built-in java.lang package. It provides several methods for common text

processing. Let's have a peek at some of them, shall we?

Snippet-01: String Utilities

Here are a few of the methods used in the examples below:

indexOf() : Has two overloaded versions. indexOf(char) returns the position where a character occurs in a

string, the first time. indexOf(String) returns the starting position where a string occurs within our string, the

first time.

lastIndexOf() : Similar in function to indexOf() , but replace "first time" with "final time" in its description.

startsWith() : Returns true if our string starts with the given prefix, false otherwise.

endsWith() : Returns true if our string ends with the given suffix, false otherwise.

isEmpty() : Returns true if our string is empty, false otherwise.

equals() : Returns true if our string is identical to the argument, false otherwise.

equalsIgnoreCase() : Returns true if our string is identical to the argument, ignoring the case of its

characters. Will return false otherwise.

 jshell> String someString = "This is a lot of text again";
 someString ==> "This is a lot of text again"
 jshell> someString.indexOf("lot")
 $1 ==> 10
 jshell> someString.charAt(10)
 $2 ==> 'l'
 jshell> someString.indexOf('i')
 $3 ==> 2
 jshell> someString.lastIndexOf('i')
 $4 ==> 25
 jshell> someString.contains("text")
 $5 ==> true
 jshell> someString.startsWith("This")
 $6 ==> true
 jshell> someString.startsWith("jfsdklfj")
 $7 ==> false
 jshell> someString.endsWith("in")
 $7 ==> true
 jshell> someString.endsWith("ain")
 $8 ==> true
 jshell> someString.endsWith("gain")
 $9 ==> true
 jshell> someString.endsWith("againasdf")
 $10 ==> false
 jshell> someString.isEmpty()
 $11 ==> false
 jshell> "".isEmpty()
 $12 ==> true
 jshell> "true".equals("true")
 $13 ==> true
 jshell> String str = "value";
 str ==> "value"
 jshell> str.equals("value")
 $14 ==> true
 jshell> str.equals("VALUE")
 $15 ==> false
 jshell> str.equalsIgnoreCase("VALUE")
 $16 ==> true
 jshell>

Summary

In this step, we:

Used our String programming skills on a small challenge.

Explored a set of simple, yet useful String utilities.

Step 05: String Immutability

What picture forms in your mind on hearing the word "immutable"? Someone whose voice cannot be muted out?

Or is it the other way round?

The word "immutable" is related to the concept of "mutability", or the possibility of "mutating" something.

"mutate" means "to change". "Immutable" refers to something that "cannot be changed".

String objects are immutable. You cannot change their value after they are created.

The method concat() joins the contents of two String objects into one.

 jshell> String str = "in28Minutes";
 str ==> "in28Minutes"
 jshell> str.concat(" is awesome")
 $1 ==> "in28Minutes is awesome"

However, the original value referred by str remains unchanged. The concat method create a new String
object.

 jshell> str
 str ==> "in28Minutes"

Just like concat() , other String methods such as toUpperCase() , toLowerCase() and trim() return new

String objects.

 jshell> String anotherString = str.concat(" is awesome");
 anotherString ==> "in28Minutes is awesome"
 jshell> str
 str ==> "in28Minutes"
 jshell> String string2 = anotherString.concat(".");
 string2 ==> "in28Minutes is awesome."
 jshell> str
 str ==> "in28Minutes"
 jshell> anotherString
 anotherString ==> "in28Minutes is awesome"
 jshell> String s= "in28Minutes is awesome."
 s ==> "in28Minutes is awesome."
 jshell> s.toUpperCase()
 s ==> "IN28MINUTES IS AWESOME."
 jshell> s.toLowerCase()"
 s ==> "in28minutes is awesome."
 jshell> String str2= " in28Minutes is awesome "
 str2 ==> " in28Minutes is awesome "
 jshell> str2.trim()
 str2 ==> "in28Minutes is awesome"
 jshell>

Summary

In this step, we:

We understood that String objects are immutable

Observed how common String utilities return a new String.

Step 06: More String Utilities

The symbol + denotes addition, and addition only, right? Any school kid will tell you that, or laugh at you if you

disagree.

Heck, we even saw how to use it with the primitive numeric types, such as int , double and others related to it.

Java does not strictly follow your arithmetic text book.

+ can also be used as a String concatenation operator.

Here is how + works

if both operands of + are numeric, then arithmetic + (addition) is performed.

If any one of the operators is a String , then string concatenation is performed.

 jshell> 1 + 2
 $1 ==> 3
 jshell> "1" + "2"
 $2 ==> "12"
 jshell> "1" + 2
 $3 ==> "12"
 jshell> "1" + 23
 $4 ==> "123"
 jshell> 1 + 23
 $5 ==> 24
 jshell> "1" + 2 + 3
 $6 ==> "123"
 jshell> 1 + 2 + "3"
 $7 ==> "33"

In the example below, a different value is printed when parentheses are used around i + 20 .

 jshell> int i = 20;
 i ==> 20
 jshell> System.out.println("Value is " + i);
 Value is 20
 jshell> System.out.println("Value is " + i + 20);
 Value is 2020
 jshell> System.out.println("Value is " + (i + 20));
 Value is 40

join() is used to join a set of String values.

 jshell> String.join(",", "2", "3", "4");
 $8 ==> "2,3,4"

replace(String, String) replaces all occurrences of the first sub-string with the second one. It also works with
char data type.

 jshell> "abcd".replace('a', 'z');
 $9 ==> "zbcd"
 jshell> "abcd".replace("ab", "xyz");
 $10 ==> "xyzcd"
 jshell>

Summary

In this step, we:

Learned that the + operator is overloaded for String concatenation

Observed how + interprets its operands, depending on the context

Noticed a few more String utility methods, such as join() and replace()

Step 07: Storing mutable text

StringBuffer and StringBuilder allow you to modify a string literal in-place.

 jshell> "123" + "123" + "1234" + "12345"
 $1 ==> "123123123412345"
 jshell> StringBuffer sb = new StringBuffer("TEst");
 sb ==> "TEst"
 jshell> sb.append(" 123");
 $2 ==> "TEst 123"
 jshell> sb
 sb ==> "TEst 123"
 jshell> sb.setCharAt(1, 'e');
 sb ==> "Test 123"
 jshell> StringBuilder sbldr = new StringBuffer("TEst");
 sbldr ==> "TEst"
 jshell>

How do you choose which one to use?

StringBuffer is thread safe. If you are writing a multi threaded program(more on this in a later section), use

StringBuffer .

Otherwise, use StringBuilder , since it offers better performance in both execution-time and memory usage.

Summary

In this step, we:

Learned about StringBuffer and StringBuilder

Step 08: Introducing Wrapper Classes

Each primitive type in Java has a corresponding built-in wrapper class. Wrapper classes are also immutable (As

well as final , more on this a little later).

Following is a list of built-in Java wrapper classes and their corresponding primitive types:

byte : Byte

short : Short

int : Integer

long : Long

float : Float

double : Double

char : Character

boolean : Boolean

The main incentives of using such wrappers in your code, are:

Accessing type information about the corresponding primitive type

Auto-Boxing feature, where a primitive data is automatically promoted to an object reference type

Moving primitive type data around data structures (called collections), using their wrapper-style counterparts

Let's look at these incentives in the next step.

Summary

In this step, we:

Were introduced to the wrapper classes available for the primitive types

Learned about the advantages of having them around

Step 09: Creating Wrapper Objects

Now that we know what wrapper classes are, and which ones correspond to each primitive Java type, let's try them

out.

Creating instance of Wrapper Classes using new is simple. Examples below.

 Integer hundred = new Integer("100");
 Boolean b1 = new Boolean("true"); //true
 Boolean b1 = new Boolean("True"); //true
 Boolean b1 = new Boolean("false"); //false
 Boolean b1 = new Boolean("False"); //false
 Boolean b1 = new Boolean("other arbitrary string"); //false

You can also use valueOf() method within types such as Integer and Float to create a wrapper object.

 Float floatWrapper = Float.valueOf(57.0f);
 int floatToInt = floatWrapper.intValue(); // 57
 Integer seven = Integer.valueOf("111", 2);
 Integer.toString(seven, 2);

Difference between creating wrapper objects using valueOf and new

The Integer.valueOf() reuses existing Integer objects with same value on the heap. If an object with same

value is present in the heap, it returns a reference to existing object. Otherwise, it returns a reference of a newly

created Integer object.

Wrapper classes are immutable. Hence, above approach is efficient and accurate.

 jshell> Integer integer1 = new Integer(5);
 integer1 ==> 5
 jshell> Integer integer2 = new Integer(5);
 integer2 ==> 5
 jshell> Integer integer3 = Integer.valueOf(5);
 integer3 ==> 5
 jshell> Integer integer4 = Integer.valueOf(5);
 integer4 ==> 5
 jshell> integer1 == integer2
 $1 ==> true
 jshell> integer3 == integer4
 $2 ==> true
 jshell>

Summary

In this step, we:

Discovered that there are two ways to create a wrapper object for primitive data

Learned that valueOf() takes advantage of immutability, to improve efficiency

Step 10: Auto-Boxing, And Some Wrapper Constants

Auto-Boxing is an example of syntactic sugar in the Java language. It does not provide new features but makes

code more readable.

Auto-boxing reuses the mechanism provided by Integer.valueOf() for Integer , Float and others.

 jshell> Integer seven = Integer.valueOf(7000);
 seven ==> 7000
 jshell> Integer sevenToo = 7000;
 sevenToo ==> 7000
 jshell> Integer sevenAgain = 7000;
 sevenAgain ==> 7000
 jshell> sevenToo == sevenAgain
 $1 ==> true

In the above example, Integer sevenToo = 7000 uses auto boxing. We are upgrading a int literal to a Integer
value. This is done implicitly by using Integer.valueOf method.

There are constants available on Wrapper classes print the size of their variables and the range of values they can

store.

 jshell> Integer.MAX_VALUE
 $2 ==> 2147483647
 jshell> Integer.MIN_VALUE
 $3 ==> -2147483648
 jshell> Integer.SIZE
 $4 ==> 32
 jshell> Integer.BYTES
 $5 ==> 4
 jshell>

Summary

In this step, we:

Understood the mechanism of auto-boxing, which uses the assignment operator route

Understood how auto-boxing internally makes use of valueOf() method

Step 11: The Java Date API

No discussion on the built-in Java primitive and reference types is complete without an exploration of the Date API.

Before Java SE 8, there were a lot of practical issues regarding the interface and implementation of the Date class.

From Java 8, Java provided an API for Date classes based on the Joda Date Framework.

The three most significant classes within this framework are : LocalDate , LocalTime and LocalDateTime .

Snippet-01 : java.time utilities

java.time.* is not imported automatically by Jshell. Let's import it in.

The commonly used utilities to access current values of date and time are:

LocalDate.now() : Returns the current date value in readable format

LocalTime.now() : Returns the current time value in a readable format

LocalDateTime.now() : Returns a combination of the current date and time values, in a readable format

 jshell> import LocalDate java.time.

 jshell> LocalDate now = LocalDate.now()
 now ==> 2018-02-01
 jshell> import *
 jshell> LocalDateTime now = LocalDateTime.now()
 now ==> 2018-02-01T15:50:48.423164
 jshell> LocalTime now = LocalTime.now()
 now ==> 15:51:09.642001
 jshell>

Summary

In this step, we:

Were introduced to the Java Date API, available through the java.time package

Saw how to use the LocalDate , LocalTime and LocalDateTime types

Step 12: Playing With java.time.LocalDate

We've been looking at calendars right from childhood, haven't we! How about playing around with a digital

calendar?

LocalDate provides a number of methods to retrieve

Date information: Day/Month/Year and related attributes

Date meta-information: Classification-related information, such as whether a leap year, etc.

 jshell> import *
 jshell> import *
 jshell> LocalDate today = LocalDate.now()
 today ==> 2018-02-01
 jshell> today.getYear()
 $1 ==> 2018
 jshell> today.getDayOfWeek()
 $2 ==> THURSDAY
 jshell> today.getDayOfMonth()
 $3 ==> 01
 jshell> today.getDayOfYear()
 $4 ==> 32
 jshell> today.getMonth()
 $5 ==> FEBRUARY
 jshell> today.getMonthValue()
 $6 ==> 2
 jshell> today.isLeapYear()
 $7 ==> false
 jshell> today.lengthOfYear()
 $8 ==> 365
 jshell> today.lengthOfMonth()
 $9 ==> 28

LocalDate is also immutable. You can use different methods provided to add and subtract days, months and

years. Each of these return a new instance of LocalDate .

 jshell> today.plusDays(100)
 $10 ==> 2018-05-12
 jshell> today.plusMonths(100)
 $11 ==> 2026-06-01
 jshell> today.plusYears(100)
 $12 ==> 2118-02-01
 jshell> today.minusYears(100)
 $13 ==> 1918-02-01
 jshell> LocalDate yesteryear = today.minusYears(100)
 yesterYear ==> 1918-02-01

java.time.

java.time.
java.time.

 jshell> today
 today ==> 2018-02-01
 jshell>

LocalDateTime extends LocalDate and provides time component as well. You can access, and perform arithmetic

on the hours, minutes, seconds and nanoseconds values.

Summary

In this step, we:

Saw common utilities that the LocalDate class provides

Learned that LocalDate , LocalTime and LocalDateTime are all immutable

Step 13: Comparing LocalDate Objects

You can take a look at additional utility methods in LocalDate in examples below:

 jshell> LocalDate today = LocalDate.now()
 today ==> 2018-02-01
 jshell> LocalDate yesterday = LocalDate.of(2018, 01, 31)
 yesterday ==> 2018-01-31
 jshell> today.withYear(2016)
 $1 ==> 2016-02-01
 jshell> today.withDayOfMonth(20)
 $2 ==> 2018-02-20
 jshell> today.withMonth(3)
 $3 ==> 2018-03-01
 jshell> today.withDayOfYear(3)
 $4 ==> 2018-04-30

You can also compare dates using the methods shown below:

 jshell> today.isBefore(yesterday)
 $5 ==> false
 jshell> today.isAfter(yesterday)
 $6 ==> true
 jshell>

These methods are also available with LocalTime and LocalDateTime classes as well.

Arrays and ArrayList

We will use the following exercise to understand heavily used data structures of Java - Arrays and ArrayList .

We would like to model a student report card in a Java program, which allows the user to do stuff such as:

 Student student - new Student(name, list-of-marks);
 int number = student.getNumberOfmarks();
 int sum = student.getTotalSumOfMarks();
 int maximumMark = student.getMaximumMark();
 int minimumMark = student.getMinimumMark();
 BigDecimal average = student.getAverageMarks();
 student.addMark(35);
 student.removeMarkAtIndex(5);

A data structure like array and ArrayList allow you to store multiple object of the same kind. These are called

aggregates.

Step 01: The Need For Array

Let's start with understanding the need for arrays.

Consider the example below. We are creating 3 marks and adding them.

 jshell> int mark1;
 mark1 ==> 0
 jshell> mark1 = 100;
 mark1 ==> 10
 jshell> int mark2 = 75;
 mark2 ==> 75
 jshell> int mark3 = 60;
 mark3 ==> 60
 jshell> int sum = mark1 + mark2 + mark3;
 sum ==> 235
 jshell> int mark4 =7 56;
 mark4 ==> 56
 jshell> sum = mark1 + mark2 + mark3 + mark4;
 sum ==> 291
 jshell>

If an additional mark component mark4 is added to the existing list of marks mark1 , mark2 and mark3 , the code
for computing sum needs to change.

All these marks are similar. How about creating a group of marks and storing it as part of single variable?

Let's create an array - marks

 jshell> int[] marks = {75, 60, 56};
 marks ==> int[3]{ 75,60,56 }

In above example

marks is an array .

marks stores multiple int values.

marks array has 3 values

In an array, the index runs from 0 to (length of array - 1). In above example, the index runs from 0 to 2.

You can use an index to find the specific element from the array. It is done by using the indexing operator, ' [] '. The
expression marks[0] maps to the first array element stored at index 0 of the array marks .

jshell> marks[0]
$20 ==> 75

jshell> marks[1]
$21 ==> 60

jshell> marks[2]
$22 ==> 56

How do we write code to sum all values in marks array?

 jshell> int sum = 0;
 sum ==> 0
 jshell> for(int mark:marks) {
 ..>> sum = sum + mark;
 ..>> }
 jshell> sum
 sum ==> 191
 jshell>

Above construct is called Enhanced for loop.

mark is the loop control variable. Its type needs to match the type of an array elements, which is int .

Above for loop can be used irrespective of the number of elements in marks array.

Step 02: Storing And Accessing Array Values

Let's dig deeper into arrays in this step.

An array can be used to store zero or more number of elements.

 jshell> int[] marks = {1, 2, 3 };
 marks ==> int[3]{ 1,2,3 }
 jshell> int[] marks = {1, 2, 3, 4, 5};
 marks ==> int[5]{ 1,2,3,4,5 }
 jshell> int[] marks = {1};
 marks ==> int[1]{ 1 }
 jshell> int[] marks = {};
 marks ==> int[0]{ }

An array can also be created with new operator. You've to specify the size of the array.

 jshell> int[] marks2 = new int[5];
 marks2 ==> int[5]{ 0,0,0,0,0 }

You can use array index to assign values.

marks2[0] = 10 stores 10 as first element in marks array.

 jshell> marks2[0]
 $1 ==> 0
 jshell> marks2[0] = 10;
 $2 ==> 10
 jshell> marks2[0]
 $3 ==> 10
 jshell>

Snippet below shows more examples.

 jshell> int[] marks2 = new int[5];
 marks2 ==> int[5]{ 0,0,0,0,0 }
 jshell> marks2[0] = 1;
 $1 ==> 1
 jshell> marks2[1] = 2;
 $2 ==> 2
 jshell> marks2[2] = 3;
 $3 ==> 3

 jshell> marks2[3] = 4;
 $4 ==> 4
 jshell> marks2[4] = 5;
 $5 ==> 5
 jshell> marks2
 marks2 ==> int[5]{ 1,2,3,4,5 }

length can be used to find the number of elements in the array.

 jshell> marks2.length
 $6 ==> 5
 jshell> int marks3 = {};
 marks3 ==> int[0]{ }
 jshell> marks3.length
 $7 ==> 0

Classroom Exercise CE-AA-01

�. Write a program that creates an array marks to store 8 int values, and code to iterate through marks using

a for loop, printing out its values.

Hint: Use the marks.length property

Solution To CE-AA-01

 jshell> int[] marks = {1, 2, 3, 4, 5, 6, 7, 8};
 marks ==> int[8]{ 1,2,3,4,5,6,7,8 }
 jshell> marks.length
 $1 ==> 8
 jshell> for(int i=0; i < marks.length; i++) {
 ..>> System.out.println(marks[i]);
 ..>> }
 1
 2
 3
 4
 5
 6
 7
 8
 jshell>

Step 04: Array Initialization, Data Types And Exceptions

Below snippet shows how arrays with different types are initialized.

Summary - int - 0, double - 0.0, boolean - false, Any object - null

 jshell> int[] marks = new int[5];
 marks ==> int[5]{ 0,0,0,0,0 }
 jshell> double[] values = new double[5];
 values ==> double[5]{ 0.0,0.0,0.0,0.0,0.0 }
 jshell> boolean[] tests = new boolean[5];
 tests ==> boolean[5]{ false,false,false,false,false }
 jshell> class Person {
 ..>>}
 | created class Person
 jshell> Person[] persons = new Person[5];
 persons ==> Person[5]{ null,null,null,null,null }
 jshell>

Let's look at a few variations of array declarations.

Important things to Remember

The declaration part of an array definition must not include the dimension of the array

The assignment part of an array definition must include the dimension of the array

All the elements of an array must be of the same, homogeneous type

 jshell> int[5] marks2;
 | Error:
 | ']' expected
 | int[5] marks2;
 |____^
 jshell> int[] marks2 = new int[];
 | Error:
 | array dimension missing
 | int[] marks2 = new int[];
 |____________^========^
 jshell> int[] marks2 = new int[5];
 marks2 ==> int[5]{ 0,0,0,0,0 }
 jshell> marks2[6]
 | java.lang.ArrayIndexOutOfBoundsException thrown : 6
 | at (#54:1)
 jshell> int[] marks3 = {1, 2, 3, 4.0};
 | Error:
 | incompatible types: possible lossy conversion from double to int
 | int[] marks3 = {1, 2, 3, 4.0};
 |__________________________^-^
 jshell>

The name of an array is a reference variable that stores the address of where the array is created on the heap.

 jshell> int[] marks4 = {1, 2, 3, 4, 5};
 marks4 ==> int[5]{ 1,2,3,4,5 }
 jshell> System.out.println(marks4);
 I@6c49835d

The built-in method Arrays.toString can be used to print out elements of an array.

 jshell> System.out.println(Arrays.toString(marks));
 [1, 2, 3, 4, 5]
 jshell>

Step 05: Array Utilities

Let's look at a few examples for

Iterating through An Array

Bulk-modification of array elements

Comparing Arrays

Sorting Arrays

Snippet-01 : Iterating through an array

Using an enhanced for loop is easy and intutive.

 jshell> int[] marks = {100, 99, 95, 96, 100};
 marks ==> int[5]{ 100,99,95,96,100 }
 jshell> for(int mark:marks) {
 ..>> System.out.println(mark);
 ..>> }
 100
 99
 95
 96
 100
 jshell> for(int i=0; i < marks.length; i++) {
 ..>> System.out.println(marks[i]);
 ..>> }
 100
 99
 95
 96
 100
 jshell>

Snippet-02 : Filling & Comparing Arrays

Array.fill fills the entire array with a specified value.

 jshell> int[] marks = new int[5];
 marks ==> int[5]{ 0,0,0,0,0 }
 jshell> Arrays.fill(marks, 100);
 jshell> marks
 marks ==> int[5]{ 100,100,100,100,100 }

Array.equals compares two given arrays, and returns a boolean value of true only if

Both arrays are of same length and

Elements at each corresponding index are equal, for all indexes

 jshell> int[] array1 = {1, 2, 3};
 array1 ==> int[3]{ 1,2,3 }
 jshell> int[] array2 = {1, 2, 3};
 array2 ==> int[3]{ 1,2,3 }

 jshell> Arrays.equals(array1, array2);
 $1 ==> true

 jshell> int[] array3 = {3, 2, 3};
 array3 ==> int[3]{ 3,2,3 }
 jshell> Arrays.equals(array1, array3);
 $2 ==> false

 jshell> int[] array4 = {1, 2};
 array4 ==> int[2]{ 1,2 }
 jshell> Arrays.equals(array1, array4);
 $3 ==> false

Array.sort : Performs an in-position sorting of elements by comparing pairs of them at a time.

 jshell> Arrays.sort(array3);
 jshell> array3
 array3 ==> int[3]{ 2,3,3 }
 jshell>

Step 06: Classroom Exercise CE-AA-02

Exercise

Armed with the knowledge of Java arrays and their in-built utility methods, let's now solve the challenge we started

off with.

 Student student - new Student(name, list-of-marks);
 int number = student.getNumberOfmarks();
 int sum = student.getTotalSumOfMarks();
 int maximumMark = student.getMaximumMark();
 int minimumMark = student.getMinimumMark();
 BigDecimal average = student.getAverageMarks();

We can implement the aggregate list-of-marks as an array.

Solution To CE-AA-02

StudentRunner.java

 package ;

 public class StudentRunner {
 public static void main(String[] args) {
 int[] marks = {99, 98, 100};
 Student student = new Student("Ranga", marks);

 int number = student.getNumberOfmarks();
 System.out.println("Number of marks : " + number);
 int sum = student.getTotalSumOfMarks();
 System.out.println("Sum of marks : " + sum);

 int maximumMark = student.getMaximumMark();
 System.out.println("Maximum of marks : " + maximumMark);
 int minimumMark = student.getMinimumMark();
 System.out.println("Minimum of marks : " + minimumMark);

 BigDecimal average = student.getAverageMarks();
 System.out.println("Average of marks : " + average);
 student.addMark(35);
 student.removeMarkAtIndex(5);
 }
 }

Student.java

 package ;
 import BigDecimal;

 public class Student {
 private String name;
 private int[] marks;

 public Student(String name, int[] marks) {
 this.name = name;
 this.marks = marks;
 }

 public int getNumberOfMarks() {
 return marks.length;

com.in28minutes.arrays

com.in28minutes.arrays
java.math.

Step 08: Variable Arguments - The Basics

What if you want to create a method which can accept variable number of arguments?

Let's look at an example. The critical part is the parameter int... values .

 jshell> class Something {
 ..>> public void doSomething(int... values) {
 ..>> System.out.println(Arrays.toString(values));
 ..>> }
 ..>> };
 | created class Something

A typical parameter would've been int values . This allows us to pass one parameter to the method.

What difference does the three dots ... make in int... values ?

 jshell> Something thing = new Something();
 thing ==> Something@2e465f6a
 jshell> thing.doSomething(1);
 [1]
 jshell> thing.doSomething(1, 2);
 [1, 2]
 jshell> thing.doSomething(1, 2, 3);
 [1, 2, 3]
 jshell>

 }

 public int getTotalSumOfMarks() {
 int sum = 0;
 for(int mark:marks) {
 sum += mark;
 }
 return sum;
 }

 public BigDecimal getAverageOfMarks() {
 int sum = getTotalSumOfMarks();
 BigDecimal average = new BigDecimal(sum).divide(new BigDecimal(marks.length), 3, Rounding
 }

 public int getMaximumMark() {
 int max = Integer.MIN_VALUE;
 for(int mark:marks) {
 if(mark > max) {
 max = mark;
 }
 }
 return max;
 }

 public int getMinimumMark() {
 int min = Integer.MAX_VALUE;
 for(int mark:marks) {
 if(mark < min) {
 min = mark;
 }
 }
 return min;
 }
 }

You can see that doSomething can be called with one, two and three parameters.

Let's look at another example:

 jshell> void sum(int... values) {
 ..>> int sum = 0;
 ..>> for(value: values) {
 ..>> sum += value;
 ..>> }
 ..>> System.out.println(sum);
 ..>> }
 | created method sum(int...)

We created a sum method with a variable argument. Let's look at how to use it.

 jshell> sum(1, 2)
 3
 jshell> sum(1, 2, 3)
 6
 jshell> sum(1, 2, 3, 4)
 1
 jshell> sum(1, 2, 3, 4, 5, 6)
 21
 jshell>

In this step, we took our first look at variable arguments. Variable arguments allow us to pass variable number of

arguments to a method.

Step 09: Variable Argument Methods For Student

Let's add a few methods to the Student class to accept variable arguments.

Student.java

 package ;
 import BigDecimal;

 public class Student {
 private String name;
 private int[] marks;

 public Student(String name, int... marks) {
 this.name = name;
 this.marks = marks;
 }

 public int getNumberOfMarks() {
 return marks.length;
 }

 public int getTotalSumOfMarks() {
 int sum = 0;
 for(int mark:marks) {
 sum += mark;
 }
 return sum;
 }

 public BigDecimal getAverageOfMarks() {
 int sum = getTotalSumOfMarks();
 BigDecimal average = new BigDecimal(sum).divide(new BigDecimal(marks.length), 3, Rounding

com.in28minutes.arrays
java.math.

StudentRunner.java

 package ;
 public class StudentRunner {
 public static void main(String[] args) {
 //int[] marks = {99, 98, 100};
 Student student = new Student("Ranga", 97, 98, 100);

 int number = student.getNumberOfmarks();
 System.out.println("Number of marks : " + number);
 int sum = student.getTotalSumOfMarks();
 System.out.println("Sum of marks : " + sum);

 int maximumMark = student.getMaximumMark();
 System.out.println("Maximum of marks : " + maximumMark);
 int minimumMark = student.getMinimumMark();
 System.out.println("Minimum of marks : " + minimumMark);
 BigDecimal average = student.getAverageMarks();
 System.out.println("Average of marks : " + average);

 student.addMark(35);
 student.removeMarkAtIndex(5);
 }
 }

Quick Tip

The variable arguments list must always be at the end of the parameter list passed to a method. The following

method definition will not be accepted by the Java compiler:

 void process(int... values, String name) {

 }

Step 10: Arrays - Some Puzzles And Exercises

 }

 public int getMaximumMark() {
 int max = Integer.MIN_VALUE;
 for(int mark:marks) {
 if(mark > max) {
 max = mark;
 }
 }
 return max;
 }

 public int getMinimumMark() {
 int min = Integer.MAX_VALUE;
 for(int mark:marks) {
 if(mark < min) {
 min = mark;
 }
 }
 return min;
 }
 }

com.in28minutes.arrays

Let's look at a few puzzles and exercises with Arrays.

When creating arrays of objects, the array ends up holding references to the created objects.

 jshell> class Person {
 ..>> }
 | created class Person
 jshell> Person[] persons = new Person[5];
 persons ==> Person[5]{ null,null,null,null,null }

We can assign new Person objects to different elements of the array.

 jshell> persons[1] = new Person();
 $1 ==> Person@394e1a0f
 jshell> persons
 persons ==> Person[5]{ null,Person@394e1a0f,null,null,null }
 jshell> persons[0] = new Person();
 $2 ==> Person@1e965684
 jshell> persons
 persons ==> Person[5]{ Person@1e965684,Person@394e1a0f, null,null,null }

You can also initialize values when you create an array.

 jshell> Person[] persons2 = {new Person(), new Person()};
 persons2 ==> Person[2]{ Person@3b088d51, Person@1786dec2 }

Here's how you can initialize a String array.

 jshell> String[] textValues = {"Apple", "Ball", "Cat"};
 textValues ==> String[2]{ "Apple","Ball","Cat" }
 jshell>

Classroom Exercise CE-AA-03

Exercises

�. Create a String array with the names of days of the week:

Sunday , Monday , Tuesday , Wednesday , Thursday , Friday , Saturday 2. Find the day with the most number of

letters in it 3. Print days of the week backwards

Solutions To CE-AA-03

WeekRunner.java

package ;

public class StringRunner {

 public static void main(String[] args) {

 String[] daysOfWeek = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Sa

 String dayWithMostCharacters = "";

 for (String day : daysOfWeek) {
 if (day.length() > dayWithMostCharacters.length()) {
 dayWithMostCharacters = day;

com.in28minutes.arrays

Step 11: Problems With Arrays

Let's look at our implementation for our challenge.

We've implemented most of the features except for addMark() and removeMarkAtIndex() .

 Student student = new Student(name, <list-of-marks>);
 int number = student.getNumberOfmarks();
 int sum = student.getTotalSumOfMarks();
 int maximumMark = student.getMaximumMark();
 int minimumMark = student.getMinimumMark();
 BigDecimal average = student.getAverageMarks();
 student.addMark(35);
 student.removeMarkAtIndex(5);

We would want to add and remove from an array. Can we do this?

The size of an array is fixed at its compile-time definition. Which means that once we define an array such as:

String[] textValues = {"Apple", "Ball", "Cat"};

The size of the textValues array is fixed to 3. You an change values inside the array. But the size cannot be

changed.

How to add an element to an array?

One of the options is

Create a fresh array with a few extra element slots to accommodate the additional elements to be inserted

Copy the existing array elements to the beginning of this new array

Add the additional elements at the rear end of this array

If elements need to be removed from an array:

Create a fresh array with correspondingly lesser element slots

Copy the existing array elements, excluding the ones to be removed, to the beginning of this new array

jshell> int[] marks = {12, 34, 45};
marks ==> int[3] { 12, 34, 45 }

jshell> int[] newMarks = new int[marks.length+1];
newMarks ==> int[4] { 0, 0, 0, 0 }

jshell> System.arraycopy(marks, 0, newMarks, 0, marks.length);

jshell> newMarks
newMarks ==> int[4] { 12, 34, 45, 0 }

 }
 }

 System.out.println("Day with Most number of characters " + dayWithMostCharacters);

 for (int i = daysOfWeek.length - 1; i >= 0; i--) {
 System.out.println(daysOfWeek[i]);
 }

 }

}

jshell> newMarks[3] = 100
$27 ==> 100

jshell> newMarks
newMarks ==> int[4] { 12, 34, 45, 100 }

As you can see, this can be very inefficient. How do we solve it?

Step 12: Introducing ArrayList

ArrayList is more dynamic than an array. It provides operations to add and remove elements.

Let's start with creating an ArrayList and add a few values.

 jshell> ArrayList arrayList = new ArrayList();
 arrayList ==> []
 jshell> arrayList.add("Apple");
 | Warning:
 | unchecked call to (E) as a member of the raw type java.util.ArrayList
 | arrayList.add("Apple");
 |_^---------------------^
 $1 ==> true
 jshell> arrayList.add("Ball");
 | Warning:
 | unchecked call to (E) as a member of the raw type java.util.ArrayList
 | arrayList.add("Ball");
 |_^---------------------^
 $2 ==> true
 jshell> arrayList.add("Cat");
 | Warning:
 | unchecked call to (E) as a member of the raw type java.util.ArrayList
 | arrayList.add("Cat");
 |_^---------------------^
 $3 ==> true
 jshell> arrayList
 arrayList ==> ["Apple", "Ball", "Cat"]

You can remove values using remove method.

 jshell> arrayList.remove("Cat");
 $4 ==> true
 jshell> arrayList
 arrayList ==> ["Apple", "Ball"]

The ArrayList instance arrayList can be used to store objects of pretty much any type, even primitive types.

Also, non-homogeneous types!

The warning message displayed is a hint to the programmer to discourage this.

 jshell> arrayList.add(1);
 | Warning:
 | unchecked call to (E) as a member of the raw type java.util.ArrayList
 | arrayList.add(1);
 |_^---------------------^
 $3 ==> true
 jshell> arrayList
 arrayList ==> ["Apple", "Ball", 1]
 jshell>

add

add

add

add

Let's say we want to store only String values in an ArrayList . How do we do it?

We can specify the type of elements that an ArrayList can contain.

 jshell> ArrayList<String> items = new ArrayList<String>();
 items ==> []

In above snippet, we are creating an ArrayList that can hold String values.

You can add String value but not numbers.

 jshell> items.add("Apple");
 $1 ==> true
 jshell> items
 items ==> ["Apple"]
 jshell> items.add(1);
 | Error
 | no suitable method found for add(int)
 |...
 jshell> items.add("Ball");
 $2 ==> true
 jshell> items.add("Cat");
 $3 ==> true
 jshell> items
 items ==> ["Apple", "Ball", "Cat"]

Rest of operations are similar to a normal ArrayList .

 jshell> items.remove("Cat");
 $4 ==> true
 jshell> items
 items ==> ["Apple", "Ball"]
 jshell> items.remove(0);
 $5 ==> "Apple"
 jshell> items
 items ==> ["Ball"]
 jshell>

Step 13: Refactoring Student To Use ArrayList

Let's now get to the Student challenge once again. Let's use an ArrayList this time.

 Student student = new Student(name, <list-of-marks>);
 int number = student.getNumberOfmarks();
 int sum = student.getTotalSumOfMarks();
 int maximumMark = student.getMaximumMark();
 int minimumMark = student.getMinimumMark();
 BigDecimal average = student.getAverageMarks();

Snippet-01 : Refactoring Student

StudentRunner.java

 package ;

 public class StudentRunner {
 public static void main(String[] args) {

com.in28minutes.arrays

 Student student = new Student("Ranga", 97, 98, 100);
 int number = student.getNumberOfmarks();
 System.out.println("Number of marks : " + number);
 int sum = student.getTotalSumOfMarks();
 System.out.println("Sum of marks : " + sum);

 int maximumMark = student.getMaximumMark();
 System.out.println("Maximum of marks : " + maximumMark);
 int minimumMark = student.getMinimumMark();
 System.out.println("Minimum of marks : " + minimumMark);

 BigDecimal average = student.getAverageMarks();
 System.out.println("Average of marks : " + average);
 System.out.println(student);
 }
 }

Student.java

 package ;
 import BigDecimal;
 import RoundingMode;
 import ArrayList;

 public class Student {
 private String name;
 private ArrayList<Integer> marks = new ArrayList<Integer>();

 public Student(String name, int... marks) {
 this.name = name;
 for(int mark: marks) {
 this.marks.add(mark);
 }
 }

 public int getNumberOfMarks() {
 return marks.size();
 }

 public int getTotalSumOfMarks() {
 int sum = 0;
 for(int mark:marks) {
 sum += mark;
 }
 return sum;
 }

 public BigDecimal getAverageOfMarks() {
 int sum = getTotalSumOfMarks();
 BigDecimal average = new BigDecimal(sum).divide(new BigDecimal(marks.size()), 3, Rounding
 }

 public int getMaximumMark() {
 return Collections.max(marks);
 }

 public int getMinimumMark() {
 return Collections.min(marks);
 }

 public String toString() {
 return name + marks;
 }
 }

com.in28minutes.arrays
java.math.
java.math.
java.util.

The Enhanced for loop works for ArrayList s as well, just like in the case of an array

The Collections.max() and Collections.min() methods can be used to find the maximum and minimum value

in an array.

Step 14: Enhancing Student Further

Let's now add the features to add and remove a student.

 package ;

 public class StudentRunner {
 public static void main(String[] args) {
 Student student = new Student("Ranga", 97, 98, 100);
 int number = student.getNumberOfmarks();
 System.out.println("Number of marks : " + number);
 int sum = student.getTotalSumOfMarks();
 System.out.println("Sum of marks : " + sum);

 int maximumMark = student.getMaximumMark();
 System.out.println("Maximum of marks : " + maximumMark);
 int minimumMark = student.getMinimumMark();
 System.out.println("Minimum of marks : " + minimumMark);

 BigDecimal average = student.getAverageMarks();
 System.out.println("Average of marks : " + average);
 System.out.println(student);

 student.addMark(35);
 System.out.println(student);
 student.removeMarkAtIndex(1);
 System.out.println(student);
 }
 }

Student.java

 package ;
 import BigDecimal;
 import RoundingMode;
 import ArrayList;

 public class Student {
 private String name;
 private ArrayList<Integer> marks = new ArrayList<Integer>();

 public Student(String name, int... marks) {
 this.name = name;
 for(int mark: marks) {
 this.marks.add(mark);
 }
 }

 public int getNumberOfMarks() {
 return marks.size();
 }

 public int getTotalSumOfMarks() {
 int sum = 0;
 for(int mark:marks) {
 sum += mark;
 }
 return sum;

com.in28minutes.arrays

com.in28minutes.arrays
java.math.
java.math.
java.util.

Console Output

Number of marks : 3

Sum of marks : 3

Average of marks : 3_

Maximum of marks : 3

Minimum of marks : 3

Ranga[97,98,100]

Ranga[97,98,100,35]

Ranga[97,100,35]

Object Oriented Programming (OOP) - Revisited

In this section, we revisit the principles of OOP, armed with the knowledge of

Arrays and their variants

Built-in Java classes and utilities, and

Conditionals and loops (normal and enhanced).

Step 01: Objects Revisited - State And Behavior

The attributes of an object determine what it is made up of. At different points in an object's lifetime, the value of

any of its attributes can change.

At any given time, values of these attributes defines the object's state.

 }

 public BigDecimal getAverageOfMarks() {
 int sum = getTotalSumOfMarks();
 BigDecimal average = new BigDecimal(sum).divide(new BigDecimal(marks.size()), 3, Rounding
 }

 public int getMaximumMark() {
 return Collections.max(marks);
 }

 public int getMinimumMark() {
 return Collections.min(marks);
 }

 public String toString() {
 return name + marks;
 }

 public void addMark(int mark) {
 marks.add(mark);
 }

 public void removeMarkAtIndex(int index) {
 marks.remove(index);
 }
 }

In The MotorBike example, the attribute speed defines a MotorBike 's state. The speed of a ducati defines its

state.

How an object responds to an external event, or a message sent to it, defines its behavior.

Messages are delivered to an object using methods. Methods are used to implement an object's behavior.

The methods setSpeed , increaseSpeed and decreaseSpeed have an effect on the observed speed of the

MotorBike s. The future state of a MotorBike depends on behavior and current state .

behavior affects state . And state affects behavior .

MotorBikeRunner.java

 package ;

 public class MotorBikeRunner {
 public static void main(String[] args) {
 MotorBike ducati = new MotorBike(100);
 MotorBike honda = new MotorBike(200);
 MotorBike yamaha = new MotorBike();
 ducati.start();
 honda.start();
 yamaha.start();

 ystem.out.println(ducati.getSpeed());
 System.out.println(honda.getSpeed());
 System.out.println(yamaha.getSpeed());

 ducati.increseSpeed(50);
 yamaha.setSpeed(250);
 honda.increaseSpeed(100);
 yamaha.decreaseSpeed(50);
 System.out.println(ducati.getSpeed());
 System.out.println(honda.getSpeed());
 System.out.println(yamaha.getSpeed());
 }
 }

MotorBike.java

 package ;

 public class MotorBike {
 //state
 private int speed;
 //behavior
 MotorBike() {
 this(5);
 }

 MotorBike(int speed) {
 if(speed > 0)
 this.speed = speed;
 }

 public void start() {
 System.out.println("Bike started!");
 }

 public void setSpeed(int speed) {
 if(speed > 0)
 this.speed = speed;

com.in28minutes.oops

com.in28minutes.oops

 }

 public int getSpeed() {
 return this.speed;
 }

 public void increaseSpeed(int howMuch) {
 setSpeed(this.speed + howMuch);
 }

 public void decreaseSpeed(int howMuch) {
 setSpeed(this.speed - howMuch);
 }
 }

Step 02: Managing class state

At a basic level, when we design a class, we decide:

state - member variables

how to create objects - Define constructors

behavior - What methods are exposed

Consider the example of a Fan class .

The above three major areas that correspond to its design could be as follows:

State

make

radius

color

isOn

speed

Constructors

Fan(String make, double radius, String color)

Behavior

void switchOn()

void SwitchOff()

void changeSpeed(int change)

String toString()

Let's try to write a simple Fan class , that covers all these aspects.

Fan.java

 package ;

 public class Fan {
 //state
 private String make;
 private double radius;
 private String color;
 private boolean isOn;
 private byte speed; //levels: 0 to 5

 //constructors

 public Fan(String make, double radius, String color) {
 this.make = make;

com.in28minutes.oops.level2

 this.radius = radius;
 this.color = color;
 }

 //methods
 public String toString() {
 return String.format("Make : %s, Radius : %f, Color : %s, Is On : %b, Speed : %d",
 make,
 radius,
 color,
 isOn,
 speed);
 }
 }

FanRunner.java

 package ;

 public class FanRunner {
 public static void main(String[] args) {
 Fan fan = new Fan("Fan-Tastic", 0.456, "GREEN");
 System.out.println(fan);
 }
 }

Console Output

Make : Fan-tastic, Radius : 0.45600, Color : GREEN, Is On : false, Speed : 0

The fields which were not set by the constructor, namely isOn and speed , assumed the language default values
for their data types, namely false (for booelan) and 0 (for int).

Step 03: Augmenting Fan With Behavior

We need to decide what kind of behavior should be provided by a Fan object.

The default state attributes of the Fan class objects, namely make , color and radius are fixed at

manufacturing time, and cannot be altered by a user of this class 's instances.

The other two state attributes, isOn and speed need to be exposed to change by Fan object users. We will offer

methods that change them.

Snippet-01 : The Fan class - v4

FanRunner.java

 package ;

 public class FanRunner {
 public static void main(String[] args) {
 Fan fan = new Fan("Fan-Tastic", 0.456, "GREEN");
 System.out.println(fan);
 fan.switchOn();
 System.out.println(fan);
 fan.setSpeed((byte)5);
 System.out.println(fan);
 fan.switchOff();
 System.out.println(fan);

com.in28minutes.oops.level2

com.in28minutes.oops.level2

 }
 }

Fan.java

 package ;

 public class Fan {
 //state
 private String make;
 private double radius;
 private String color;
 private boolean isOn;
 private byte speed; //levels: 0 to 5

 //constructors
 public Fan(String make, double radius, String color) {
 this.make = make;
 this.radius = radius;
 this.color = color;
 }

 //methods
 public String toString() {
 return String.format("Make : %s, Radius : %f, Color : %s, Is On : %b, Speed : %d",
 make,
 radius,
 color,
 isOn,
 speed);
 }

 //isOn
 /*public void isOn(boolean isOn) {
 this.isOn = isOn;
 }*/

 public void switchOn() {
 isOn = true;
 setSpeed((byte)1);
 }

 public void switchOff() {
 isOn = false;
 setSpeed((byte)0);
 }

 public void setSpeed(byte speed) {
 this.speed = speed;
 }
 }

Console Output

Make : Fan-Tastic, Radius : 0.45600, Color : GREEN, Is On : false, Speed : 0

Make : Fan-Tastic, Radius : 0.45600, Color : GREEN, Is On : true, Speed : 1

Make : Fan-Tastic, Radius : 0.45600, Color : GREEN, Is On : true, Speed : 5

Make : Fan-Tastic, Radius : 0.45600, Color : GREEN, Is On : false, Speed : 0

Snippet-01 Explained

com.in28minutes.oops.level2

Regarding the state attribute isOn :

A state modifier method such as public void isOn(boolean) is not preferred, even though it does alter

this attribute. This is because it is not intuitive from the class user's perspective.

Alternatively, methods such as public void switchOn() and public void switchOff() not only toggle

the attribute isOn , but are also intuitive and useful to the Fan class users (Here, the FanRunner
class).

Regarding the state attribute speed :

setSpeed is both intuitive as well as useful, so not much rethinking needed here

speed needs to be affected by the operations switchOn() and switchOff() . We have added calls to
setSpeed() in these method definitions.

Summary

The best way to design a class is using an Outside In thought process:

Who all could possibly be using my class ?

What functionality would they absolutely require?

Step 04: Programming Exercise PE-OOP-01

�. Write a simple Rectangle class , while covering the following constituents:

State

length

width

Constructors

Behavior or Methods

Solution To PE-OOP-01

RectangleRunner.java

 package ;

 public class RectangleRunner {
 public static void main(String[] args) {
 Rectangle rectangle = new Rectangle(12, 23);
 System.out.println(rectangle);
 rectangle.setWidth(25);
 System.out.println(rectangle);
 rectangle.setLength(20);
 System.out.println(rectangle);
 }
 }

Rectangle.java

 package ;

 public class Rectangle {
 //state:
 private int length;
 private int width;

 //creation:

com.in28minutes.oops.level2

com.in28minutes.oops.level2

Console Output

Rectangle - length : 12, width : 23, area : 276, perimeter : 70

Rectangle - length : 12, width : 25, area : 300, perimeter : 74

Rectangle - length : 20, width : 25, area : 500, perimeter : 90

Solution Explained

A Rectangle object created without a specified length and width makes no practical sense, therefore a

default constructor is not provided.

Step 06: Understanding Object Composition

Let's take a re-look at the state attributes of the Fan class :

Fan.java

 package ;

 public class Fan {
 //state
 private String make;
 private double radius;

 public Rectangle(int length, int width) {
 this.length = length;
 this.width = width;
 }

 //behaviors:
 public int getLength() {
 return length;
 }

 public int getWidth() {
 return width;
 }

 public void setLength(int length) {
 this.length = length;
 }

 public void setWidth(int width) {
 this.width = width;
 }

 public int area() {
 return length * width;
 }

 public int perimeter() {
 return 2*(length + width);
 }

 public String toString() {
 return String.format("Rectangle - length : %d, width : %d, area : %d, perimeter : %d",
 length,
 width,
 area(),
 perimeter());
 }
 }

com.in28minutes.oops.level2

 private String color;
 private boolean isOn;
 private byte speed;

 //constructors
 //methods
 }

All member variables of 'Fan' class are primitive variables. Can we make it complex and include other classes?

Snippet-01 : Object composition - State

CustomerRunner.java

 package ;

 public class CustomerRunner {
 public static void main(String[] args) {
 Customer customer = new Customer();
 }
 }

Address.java

 package ;

 public class Address {
 //state
 private String doorNo;
 private String streetInfo;
 private String city;
 private String zipCode;

 //creation
 //behaviors
 }

Customer.java

 package ;

 public class Customer {
 //state
 private String name;
 private Address homeAddress;
 private Address workAddress;

 //creation
 //behaviors
 }

Snippet-01 Explained

Customer customer is composed of:

name ,

homeAddress , and

workAddress .

com.in28minutes.oops.level2

com.in28minutes.oops.level2

com.in28minutes.oops.level2

String is a built-in type, and is simple. Address is a user defined type, and is composed of:

doorNo ,

streetInfo ,

city , and

zipCode

Snippet-02 : Object Composition v2 - Construction

Let's now add constructors to allow easy creation of these objects.

CustomerRunner.java

Address.java

 package ;

 public class Address {
 //state
 private String doorNo;
 private String streetInfo;
 private String city;
 private String zipCode;

 //creation
 public Address(String doorNo, String streetInfo, String city, String zipCode) {
 this.doorNo = doorNo;
 this.streetInfo = streetInfo;
 this.city = city;
 this.zipCode = zipCode;
 }

 //behaviors
 }

Customer.java

 package ;

 public class Customer {
 //state
 private String name;
 private Address homeAddress;
 private Address workAddress;

 //creation
 //workAddress not mandatory for creation
 public Customer(String name, String homeAddress) {

 package ;

 public class CustomerRunner {
 public static void main(String[] args) {
 //Customer customer = new Customer();
 Address homeAddress = new Address("Flat No. 51", "Hiranandani Gardens", Mumbai", "400076"
 Address workAddress = new Address("Administrative Office", "Western Block", "Mumbai", "40
 Customer customer = new Customer("Ashwin Tendulkar", homeAddress, workAddress);
 }
 }

com.in28minutes.oops.level2

com.in28minutes.oops.level2

com.in28minutes.oops.level2

 this.name = name;
 this.homeAddress = homeAddress;
 }

 //behaviors
 }

Snippet-9 : Object Composition v3 : Behaviors

Let's add methods to provide behavior.

CustomerRunner.java

Address.java

 package ;

 public class Address {
 //state
 private String doorNo;
 private String streetInfo;
 private String city;
 private String zipCode;

 //creation
 public Address(String doorNo, String streetInfo, String city, String zipCode) {
 super();
 this.doorNo = doorNo;
 this.streetInfo = streetInfo;
 this.city = city;
 this.zipCode = zipCode;
 }

 //behaviors
 public String toString() {
 return doorNo + ", " + streetInfo + ", " + city + " - " + zipCode;
 }
 }

Customer.java

 package ;

 public class Customer {
 //state
 private String name;

 package ;

 public class CustomerRunner {
 public static void main(String[] args) {
 //Customer customer = new Customer();
 Address homeAddress = new Address("Flat No. 51", "Hiranandani Gardens", "Mumbai", "400076
 Customer customer = new Customer("Ashwin Tendulkar", homeAddress);
 System.out.println(customer);
 Address workAddress = new Address("Administrative Office", "Western Block", "Mumbai", "40
 customer.setWorkAddress(workAddress);
 System.out.println(customer);
 }
 }

com.in28minutes.oops.level2

com.in28minutes.oops.level2

com.in28minutes.oops.level2

 private Address homeAddress;
 private Address workAddress;

 //creation
 //workAddress not mandatory for creation
 public Customer(String name, String homeAddress) {
 this.name = name;
 this.homeAddress = homeAddress;
 }

 //behaviors
 //certain components of homeAddress and workAddress can be modified, not the name
 public void setHomeAddress(Address homeAddress) {
 this.homeAddress = homeAddress;
 }

 public void setWorkAddress(Address workAddress) {
 this.workAddress = workAddress;
 }

 public Address getHomeAddress() {
 return homeAddress;
 }

 public Address getWorkAddress() {
 return workAddress;
 }

 public String toString() {
 return String.format("Customer [%s] lives at [%s], works at [%s]",
 name,
 homeAddress,
 workAddress);
 }
 }

Console Output

Customer [Ashwin Tendulkar] lives at [Flat No. 51, Hiranandani Gardens, Mumbai - 400076], works at [null]

Customer [Ashwin Tendulkar] lives at [Flat No. 51, Hiranandani Gardens, Mumbai - 400076], works at

[Administrative Office, Western Block, Mumbai - 400076]

Step 07: Programming Exercise PE-OOP-02

Exercises

Write a program that manages Books and their Reviews:

Book:

Id

Name

Author

Review:

Id

Description

Rating

 Book book = new Book(123, "Object Oriented Programming With Java", "Ranga");
 book.addReview(new Review(10, "Great Book", 4));
 book.addReview(new Review(101, "Awesome", 5));
 System.out.println(book);

Solution To PE-OOP-02

BookReviewRunner.java

 package ;

 public class BookReviewRunner {
 public static void main(String[] args) {
 Book book = new Book(123, "Object Oriented Programming With Java", "Ranga");
 book.addReview(new Review(10, "Great Book", 4));
 book.addReview(new Review(101, "Awesome", 5));
 System.out.println(book);
 }
 }

Review.java

 package ;

 public class Review {
 private int id;
 private String description;
 private byte rating;

 public Review(int id, String description, byte rating) {
 this.id = id;
 this.description = description;
 this.rating = rating;
 }

 public String toString() {
 return "(Review-" + id + ", " + description + ", " + rating + ")";
 }
 }

Book.java

 package ;

 public class Book {
 private int id;
 private String title;
 private String author;

 private ArrayList<Review> reviewList = new ArrayList<Review>();
 public Book(int id, String title, String author) {
 this.id = id;
 this.title = title;
 this.author = author;
 }

 public void addReview(Review review) {
 reviewList.add(review);
 }

 public String toString() {
 return "Book-" + id + ", " + title + ", " + author + ", " + reviews);
 }
 }

com.in28minutes.oops.level2

com.in28minutes.oops.level2

com.in28minutes.oops.level2

Console Output

Book-123, Object Oriented Programming With Java, Ranga, [(Review-10, Great Book", 4), (Review-101, Awesome,

5)]

Step 07: The Need For Inheritance

Let's look at two classes Person and Student .

Person.java

 package ;

 public class Person {
 private String name;
 private String email;
 private String phoneNumber;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }
 }

StudentWithoutInheritance.java

 package ;

 public class StudentWithoutInheritance {
 private String name;
 private String email;
 private String phoneNumber;
 private String college;
 private int year;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setEmail(String email) {

com.in28minutes.oops.level2.inheritance

com.in28minutes.oops.level2.inheritance

 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

 public void setCollege(String college) {
 this.college = college;
 }

 public String getCollege() {
 return college;
 }

 public void setYear(int year) {
 this.year = year;
 }

 public int getYear() {
 return year;
 }
 }

In above code examples, you can see that there is a lot of

The member fields of Person , namely name , email and phoneNumber , are replicated in Student .

The setter and getter methods pertaining to the above fields of Person get repliated in Student as well.

Every Student is a Person . What if we could extend Person class instead of duplicating everything?

Enter Inheritance

Student is a Person . Java supports one of the basic Object Oriented Programming Paradigms : Inheritance.

Student can inherit from Person , to model the fact that a Student is a Person .

This is accomplished by using the Java keyword extends , during class definition of Student .

 public class Person {
 // <Person Definition>
 }

 public class Student extends Person {
 // <Student Definition, after reusing Person Code>
 }

Inheritance is a mechanism of code reuse. In this case, all the fields and methods previously defined in Person are

available for Student as well.

In this Inheritance relationship, Person is called the super-class of Student . Likewise, Student is the sub-class

of Person .

Let's now look at how we go about changing the Student class definition.

Snippet-02 : Student inherits from Person - v1

Person.java

 package ;

 public class Person {
 private String name;
 private String email;
 private String phoneNumber;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }
 }

Student.java

 package ;

 public class Student extends Person {
 private String collegeName;
 private int year;

 public void setCollegeName(String college) {
 this.collegeName = collegeName;
 }

 public String getCollegeName() {
 return collegeName;
 }

 public void setYear(int year) {
 this.year = year;
 }

 public int getYear() {
 return year;
 }
 }

StudentRunner.java

com.in28minutes.oops.level2.inheritance

com.in28minutes.oops.level2.inheritance

 package ;
 public class StudentRunner {
 public static void main(String[] args)
 Student student = new Student();
 // < all setter() and getter() methods of Person and Student available >
 student.setName("Ranga");
 student.setEmail("in28minutes@gmail.com");
 }
 }

Step 09: Introducing Object class

In the Java language, every class, whether an in-built Java library class, or a user-defined class, implicitly inherits

from the class Object .

This Object class is available in the Java system package java.lang . This class is at the root of the Java class
hierarchy. All classes, including arrays, implement/inherit the methods of this class .

Let's take a look at the Person and Student classes.

Snippet-01 : The Object class

Person.java

 package ;

 public class Person {
 private String name;
 private String email;
 private String phoneNumber;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }
 }

Student.java

 package ;

com.in28minutes.oops.level2.inheritance

com.in28minutes.oops.level2.inheritance

com.in28minutes.oops.level2.inheritance

 public class Student extends Person {
 private String collegeName;
 private int year;

 public void setCollegeName(String college) {
 this.collegeName = collegeName;
 }

 public String getCollegeName() {
 return collegeName;
 }

 public void setYear(int year) {
 this.year = year;
 }

 public int getYear() {
 return year;
 }
 }

StudentRunner.java

 package ;

 public class StudentRunner {
 public static void main(String[] args)
 //Student student = new Student();
 //student.setName("Ranga");
 //student.setEmail("in28minutes@gmail.com");

 Person person = new Person();
 String personStr = person.toString();
 System.out.println(personStr);
 System.out.println(person);
 int hashCode = person.hashCode();
 person.notify();
 }
 }

Console Output

com.in28minutes.oops.level2.inheritance.Person@7a46a697

com.in28minutes.oops.level2.inheritance.Person@7a46a697

Snippet-01 Explained

Methods of the Object class such as toString() , hashCode() and notify() are available to objects of

class Person as default implementations.

The statement System.out.println(person); actually gets translated to

System.out.println(person.toString()) , as the Java system implicitly makes the call person.toString() as it

is inherited from class Object for use in the String context.

Step 10: Inheritance And Method Overriding

Sub-class inherit features from super-class

state attributes : super-class member variables

behavior components : super-class method definitions

com.in28minutes.oops.level2.inheritance

These are of course, available for access (and modification), and invocation, respectively, within the sub-class.

You can also override super class method implementations in a sub class - method overriding.

Snippet-01: Method Overriding

Person.java

PersonRunner.java

 package ;

 public class PersonRunner {
 public static void main(String[] args)
 Person person = new Person();
 person.setName("Ranga");
 person.setEmail("in28minutes@gmail.com");
 person.setPhoneNumber("9898989898");
 String personStr = person.toString();
 System.out.println(personStr);
 System.out.println(person);
 }
 }

Console Output

 package ;

 public class Person {
 private String name;
 private String email;
 private String phoneNumber;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

 public String toString() {
 return String.format("Person %s , Email : %s, Phone Number : %s", name, email, phoneNumbe
 }
 }

com.in28minutes.oops.level2.inheritance

com.in28minutes.oops.level2.inheritance

Person Ranga , Email : in28minutes@gmail.com, Phone Number : 9898989898

Person Ranga , Email : in28minutes@gmail.com, Phone Number : 9898989898

Snippet-01 Explained

By defining the method toString() within the Person sub- class , we are overriding the default version provided
by the Object super- class .

Step 11: Classroom Exercise CE-OOP-01

Create an Employee class extending Student Class with following attributes:

Title

Employer

EmployeeGrade

Salary

Create a method toString() within Employee to print all state attribute values, including those of Person.

Snippet-01 : Employee Inheritance

Person.java

Employee.java

 package ;

 public class Person {
 private String name;
 private String email;
 private String phoneNumber;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

 public String toString() {
 return Sring.format("Person %s , Email : %s, Phone Number : %s", name, email, phoneNumber
 }
 }

com.in28minutes.oops.level2.inheritance

mailto:in28minutes@gmail.com
mailto:in28minutes@gmail.com

EmployeeRunner.java

 package ;

 public class EmployeeRunner {
 public static void main(String[] args) {
 Employee employee = new Employee();
 employee.setName("Ranga");
 employee.setEmail("in28minutes@gmail.com");
 employee.setPhoneNumber("123-456-7890");
 employee.setTitle("Programmer Analyst");
 employee.setEmployerName("In28Minutes");
 employee.setEmployeeGrade('A');

 package ;
 import BigDecimal;

 public class Employee extends Person {
 private String title;
 private String employerName;
 private char employeeGrade;
 private BigDecimal salary;

 public void setTitle(String title) {
 this.title = title;
 }

 public String getTitle() {
 return title;
 }

 public void setEmployerName(String employer) {
 this.employerName = employerName;
 }

 public String getEmployerName() {
 return employerName;
 }

 public void setEmployeeGrade(char employeeGrade) {
 this.employeeGrade = employeeGrade;
 }

 public char getEmployeeGrade() {
 return employeeGrade;
 }

 public void setSalary(BigDecimal salary) {
 this.salary = salary;
 }

 public BigDecimal getSalary() {
 return salary;
 }

 public String toString() {
 return String.format("Employee Title: %s, Employer: %s, Employee Grade: %c, Salary: %s",
 title,
 employerName,
 employeeGrade,
 salary);
 }
 }

com.in28minutes.oops.level2.inheritance
java.math.

com.in28minutes.oops.level2.inheritance

 employee.setSalary(new BigDecimal("50000"));
 System.out.println(employee);
 }
 }

Console Output

Employee Title: Programmer Analyst, Employer: In28Minutes, Employee Grade: A, Salary: 50000.0000

Snippet-01 Explained

We have not printed the underlying Person object details in Employee.toString() method overriding. Let's look

to do that next.

Step 12: Constructors, And Calling super()

The super keyword allows an sub-class to access the attributes present in the super-class.

Snippet-01 : Calling Person.toString()

Employee.java

EmployeeRunner.java

 package ;

 public class EmployeeRunner {
 public static void main(String[] args) {
 Employee employee = new Employee();
 employee.setName("Ranga");
 employee.setEmail("in28minutes@gmail.com");
 employee.setPhoneNumber("123-456-7890");
 employee.setTitle("Programmer Analyst");
 employee.setEmployerName("In28Minutes");
 employee.setEmployeeGrade('A');
 employee.setSalary(new BigDecimal("50000"));
 System.out.println(employee);
 }
 }

Console Output

 package ;
 import BigDecimal;

 public class Employee extends Person {
 //focusing only on the toString() method
 public String toString() {
 return String.format("Employee Name: %s, Email: %s, Phone Number: %s, Title: %s, Employer
 super.getName(),
 super.getEmail(),
 super.getPhoneNumber(),
 title,
 employerName,
 employeeGrade,
 salary);
 }
 }

com.in28minutes.oops.level2.inheritance
java.math.

com.in28minutes.oops.level2.inheritance

Employee Name: Ranga, Email: in28minutes@gmail.com, Phone Number: 123-456-7890, Title: Programmer

Analyst, Employer: In28Minutes, Employee Grade: A, Salary: 50000.0000

The super keyword allows an sub-class to access the attributes present in the super-class. Hence, we were able

to invoke the getter methods of the Person object within the Employee object, like this within

Employee.toString() * super.getName() * super.getEmail() * super.getPhoneNumber()

Sub-Class Contructor

What happens when a sub class object is created? Does the super class constructor get called?

Snippet-7 : Person class

Person.java

 package ;

 public class Person {

 public Person() {
 System.out.println("Inside Person Constructor");
 }

 }

Employee.java

 package ;
 import BigDecimal;

 public class Employee extends Person {

 public Employee() {
 //super();
 System.out.println("Inside Employee Constructor");
 }

 }

EmployeeRunner.java

 package ;

 public class EmployeeRunner {
 public static void main(String[] args) {
 Employee employee = new Employee();
 }
 }

Console Output

Inside Person Constructor

Inside Employee Constructor

Snippet-02 Explained

When a sub-class object is created

com.in28minutes.oops.level2.inheritance

com.in28minutes.oops.level2.inheritance
java.math.

com.in28minutes.oops.level2.inheritance

mailto:in28minutes@gmail.com

sub-class constructor is called and it implicitly invokes its super-class constructor.

The Java compiler inserts the code super(); (if it is not explicitly added by the programmer) as the first statement

in the body of the sub-class default constructor, here Employer() .

The statement super(); is the invocation of the super-class default constructor.

Hence, the body of the super-class constructor is always invoked before the body of the sub-class constructor.

Snippet-3 : Person - Non-Default Constructor

Let's remove the no argument constructor and add a one argument constructor to Person class.

 public Person(String name) {
 this.name = name;
 }

PersonRunner.java

 package ;

 public class PersonRunner {
 public static void main(String[] args)
 Person person = new Person("Ranga");
 person.setEmail("in28minutes@gmail.com");
 person.setPhoneNumber("123-456-7890");
 System.out.println(person);
 }
 }

Console Output

Person Ranga , Email : in28minutes@gmail.com, Phone Number : 123-456-7890

Snippet-03 Explained

When we added the constructor with one argument for class Employee , the existing code in
EmployeeRunner.java will cause a compilation error, because there is no longer any default constructor for

Person !

super() cannot be called from within the default constructor of Employee .

One option is to put the no argument constructor back.

 public Person() {
 System.out.println("Inside Person Constructor");
 }

But, it doesn't really make sense to create a Person without a name , does it?

The solution in this case would be to call the single-argument constructor Person(String) by an invocation such

as super(name);

 public Employee(String name, String title, String employerName, char employeeGrade) {
 super(name);
 this.title = title;
 this.employerName = employerName;
 this.employeeGrade = employeeGrade;
 }

com.in28minutes.oops.level2.inheritance

mailto:in28minutes@gmail.com

EmployeeRunner.java

 package ;

 public class EmployeeRunner {
 public static void main(String[] args) {
 Employee employee = new Employee("Ranga", "Programmer Analyst", "In28Minutes", 'A');
 System.out.println(employee);
 }
 }

Console Output

Employee Name: Ranga, Email: null, Phone Number: null, Title: Programmer Analyst, Employer: In28Minutes,

Employee Grade: A, Salary: null

Snippet-10 : EmployeeRunner complete

Let's provide setters to set the non mandatory attributes.

EmployeeRunner.java

Console Output

Employee Name: Ranga, Email: in28minutes@gmail.com, Phone Number: 123-456-7890, Title: Programmer

Analyst, Employer: In28Minutes, Employee Grade: A, Salary: 50000.0000

Snippet-10: Student updated

Let's add a two argument construtor to the Student class.

Student.java

 package ;

 public class Student extends Person {
 private String collegeName;
 private int year;

 public Student(String name, String collegeName) {
 super(name);
 this.collegeName = collegeName;
 }

 public String getCollegeName() {
 return collegeName;

 package ;

 public class EmployeeRunner {
 public static void main(String[] args) {
 Employee employee = new Employee("Ranga", "Programmer Analyst", "In28Minutes",
 employee.setEmail("in28minutes@gmail.com");
 employee.setPhoneNumber("123-456-7890");
 employee.setSalary(new BigDecimal("50000"));
 System.out.println(employee);
 }
 }

com.in28minutes.oops.level2.inheritance

com.in28minutes.oops.level2.inheritance

com.in28minutes.oops.level2.inheritance

mailto:in28minutes@gmail.com

 }

 public void setYear(int year) {
 this.year = year;
 }

 public int getYear() {
 return year;
 }

 public String toString() {
 return "Student : " + super.name() + ", College: " + collegeName;
 }
 }

StudentRunner.java

 package ;

 public class StudentRunner {
 public static void main(String[] args)
 //Student student = new Student();
 Student student = new Student("Ranga", "IIT Bombay");
 System.out.println(student);
 }
 }

Console Output

Student : Ranga, College : IIT Bombay

Step 13: Multiple Inheritance, Reference Variables And instanceof

In other programming languages, Multiple Inheritance is allowed. A class can directly inherit from two or more

classes.

However, in Java, direct Multiple Inheritance is not allowed.

Snippet-01 : Multiple Inheritance

 jshell> class Animal {
 ..>> }
 | created class Animal
 jshell> class Pet {
 ..>> }
 | created class Pet

 jshell> class Dog extends Animal, Pet {
 ..>> }
 | Error:
 | '{' expected
 | class Dog extends Animal, Pet {
 |_________________________^
 jshell>**

class Dog extends Animal, Pet {} throws an error. You cannot extend two classes.

Inheritance Chains

However you can create an inheritance chain.

com.in28minutes.oops.level2.inheritance

class C is a class B

class B is a class A

Let's check out a small code snippet.

Snippet-02 : An Inheritance Chain

`Dog **is a** Pet , Pet **is a** Animal```. This is an example of what is called an inheritance hierarchy.

 jshell> class Animal {
 ..>> }
 | created class Animal
 jshell> class Pet extends Animal {
 ..>> public void groom() {
 ..>> System.out.println("Pet Groom");
 ..>> }
 ..>> }
 | created class Pet_
 jshell> class Dog extends Pet {
 ..>> }
 | created class Dog

If you want, you can visualize in your mind as : Dog --> Pet --> Animal --> Object (Yes, Object is sitting at

the top of all inheritance hierarchies in Java!)

The statement Dog dog = new Dog(); sets off constructor invocations up the inheritance hierarchy: * Dog()
invokes Pet() * Pet() invokes Animal() * Animal() invokes Object()

 jshell> Dog dog = new Dog();
 dog ==> Dog@23a6e47f

The expression dog.toString() does a traversal up the inheritance hierarchy as well: * Since Dog.toString() is

not defined, the compiler looks for Pet.toString() * Since Pet.toString() is not defined, the compiler looks for

Animal.toString() * Since Animal.toString() is not defined, the compiler looks for Object.toString() , which
is always provided as the default implementation for all sub-classes of class Object in Java.

 jshell> dog.toString();
 $1 ==> "Dog@23a6e47f"

The invocation dog.groom(); is also resolved by traversing up the inheritance hierarchy.

 jshell> dog.groom();
 "Pet Groom"

The statement Pet pet = new Dog(); is really interesting. In Java, it is permitted for a super-class reference

variable to reference a sub-class object instance.

Through such a reference, method invocations are also permitted, and the correct thing gets done. Hence,

pet.groom(); causes the output " Pet Groom ".

However, the converse assignment is not allowed. A sub-class reference variable cannot reference a super-class

object instance. * The statement Dog dog = new Pet(); therefore, causes a compiler error.

 jshell> Pet pet = new Dog();
 pet ==> Dog@22d37d54
 jshell> pet.groom();
 Pet Groom

 jshell> Dog dog = new Pet();
 | Error:
 | incompatible types: Pet cannot be converted to Dog
 | Dog dog = new Pet();
 |___________^-------^

The instanceof operator is to find the relationship between an object and a class. If the object is an instance of

the class or its sub class, it returns true.

 jshell> pet instanceof Pet
 $2 ==> true
 jshell> pet instanceof Dog
 $3 ==> true

The instanceof operator throws an error if the object and class are unrelated.

 jshell> pet instanceof String
 | Error:
 | incompatible types: Pet cannot be converted to String
 | pet instanceof String
 |_^-^
 jshell> pet instanceof Animal
 $4 ==> true
 jshell> pet instanceof Object
 $5 ==> true

The instanceof operator returns false if the object is an instance of a super class of the class provided.

 jshell> Animal animal new Animal();
 animal ==> Animal@3632be31
 jshell> animal instanceof Pet
 $6 ==> false
 jshell> animal instanceof Dog
 $7 ==> false
 jshell> animal instanceof Object
 $8 ==> true
 jshell>

Step 14: Introducing Abstract Classes

An abstract class can contain abstract methods.

An abstract method does not have a method definition.

Here's how a typical class looks like. You can create methods inside the class and you can create instances of the

class.

 jshell> class Animal {
 ..>> public void bark() {
 ..>> System.out.println("Animal Bark");
 ..>> }
 ..>> }
 | created class Animal
 jshell> Animal animal = new Animal();
 animal ==> Animal@335eadca
 jshell> animal.bark();
 Animal Bark

java.lang.

Let's see how to create an abstract class:

 jshell> abstract class AbstractAnimal {
 ..>> abstract public void bark();
 ..>> }
 | created class AbstractAnimal

The syntax is simple: add abstract keyword before the class.

An abstract class cannot be instantiated.

 jshell> AbstractAnimal animal = new AbstractAnimal();
 | Error:
 | AbstractAnimal is abstract; cannot be instantiated.
 | AbstractAnimal animal = new AbstractAnimal();
 |^--^
 jshell>

However, it can be sub-classed, creating inheritance hierarchies below it. A sub-class of an abstract class (often

called a concrete class) must override its abstract methods.

 jshell> class Dog extends AbstractAnimal {
 ..>> }
 | Error:
 | Dog is not abstract and does not override abstract method bark() in AbstractAnimal
 | class Dog extends AbstractAnimal {
 |^----------------------------------...
 jshell> class Dog extends AbstractAnimal {
 ..>> public void bark() {
 ..>> System.out.println("Bow Bow");
 ..>> }
 ..>> }
 | created class Dog
 jshell> Dog dog = new Dog();
 dog ==> Dog@5a8e6209
 jshell> dog.bark();
 Bow Bow

Step 15: Abstract Classes - Design Aspects

Why do we need an abstract class?

Consider a feast being prepared at a home, and several dishes are on the menu for the event. Obviously, each dish

would have certain procedure for it to be prepared. Cooking any dish normally involves following a tried and tested

recipe, and its preparation boils down to these basic steps:

Prepare the Ingredients

Cook the Recipe

Cleanup (the Mess created!)

These steps would be different for each dish but the order of steps remain the same.

Snippet-01 : The Recipe Hierarchy

Let's use abstract class to build the recipe.

AbstractRecipe.java

 package ; com.in28minutes.oops.level2

 public abstract class AbstractRecipe {
 public void execute() {
 prepareIngredients();
 cookRecipe();
 cleanup();
 }

 abstract void prepareIngredients();
 abstract void cookRecipe();
 abstract void cleanup();
 }

We defined abstract methods for each of the steps and created an execute method calling them. execute
method ensures that the order of method call is followed.

You can define implementations implementing the abstract methods.

CurryRecipe.java

 package ;

 public class CurryRecipe extends AbstractRecipe {
 public CurryRecipe() {
 System.out.println("[Curry Preparation Method]");
 }

 @Override
 void prepareIngredients() {
 System.out.println("Get Vegetables Cut and Ready");
 System.out.println("Get Spices Ready");
 }

 @Override
 void cookRecipe() {
 System.out.println("Steam And Fry Vegetables");
 System.out.println("Cook With Spices");
 System.out.println("Add Seasoning");
 }

 @Override
 void cleanup() {
 System.out.println("Discard unused Vegetables");
 System.out.println("Discard unused Spices");
 }
 }

RecipeRunner.java

 package ;

 public class RecipeRunner {
 public static void main(String[] args) {
 CurryRecipe curryRecipe = new CurryRecipe();
 curryRecipe.execute();
 }
 }

Console Output

[Curry Preparation Method]

com.in28minutes.oops.level2

com.in28minutes.oops.level2

Get Vegetables Cut and Ready

Get Spices Ready

Steam And Fry Vegetables

Cook With Spices

Add Seasoning

Discard unused Vegetables

Discard unused Spices

Snippet-01 Explained

CurryRecipe defines what needs to be done in each step. When we invoke the execute method, the steps are

executed in order.

Snippet-02 : MicrowaveCurryRecipe

We can easily create more recipes.

MicrowaveCurryRecipe.java

 package ;

 public class MicrowaveCurryRecipe extends AbstractRecipe {
 public MicrowaveCurryRecipe() {
 System.out.println("[Curry Microwave Method]");
 }

 @Override
 void prepareIngredients() {
 System.out.println("Get Vegetables Cut and Ready");
 System.out.println("Switch on Microwave");
 }

 @Override
 void cookRecipe() {
 System.out.println("Microwave Vegetables");
 System.out.println("Add Seasoning");
 }

 @Override
 void cleanup() {
 System.out.println("Switch Off Microwave");
 System.out.println("Discard unused Vegetables");
 }
 }

RecipeRunner.java

 package ;

 public class RecipeRunner {
 public static void main(String[] args) {
 MicrowaveCurryRecipe mcirowaveRecipe = new MicrowaveCurryRecipe();
 microwaveRecipe.execute();
 }
 }

com.in28minutes.oops.level2

com.in28minutes.oops.level2

Console Output

[Curry Microwave Method]

Get Vegetables Cut and Ready

Switch on Microwave

Microwave Vegetables

Add Seasoning

Switch off Microwave

Discard unused Vegetables

Snippet-02 Explained

MicrowaveCurryRecipe defines what needs to be done in each step. When we invoke the execute method, the

steps are executed in order.

Summary

This pattern is called a Template method pattern. You define an abstract class with the order of steps defined. You

leave the implementation of each of the steps to the sub classes.

Step 16: Abstract Classes - Puzzles

Let's look a few FAQ regarding abstract classes.

An abstract class can be created, without any abstract member methods.

 jshell> abstract class AbstractTest {
 ...>}
 | creates abstract class AbstractTest

An abstract class can be a sub class to create another abstract class , without overriding any of the super-
class abstract methods.

 jshell> abstract class AbstractAlgorithm {
 ...> abstract void flowChart();
 ...> }
 | creates abstract class AbstractAlgorithm
 jshell> abstract class AlgorithmTypeOne extends AbstractAlgorithm {
 ...> }
 | creates abstract class AlgorithmTypeOne

An abstract class can have member variables.

 jshell> abstract class AbstractAlgorithm {
 ...> private int stepCount;
 ...> }
 | replaced abstract class AbstractAlgorithm

An abstract class can have non-abstract methods.

 jshell> abstract class AbstractAlgorithm {
 ...> private int stepCount;
 ...> public int getStepCount() {

 ...> return stepCount;
 ...> }
 ...> }
 | replaced abstract class AbstractAlgorithm
 jshell>

Step 17: Introducing Interfaces

What does a "gaming console" mean to you?

A device that has buttons or other controls on it, that enable us to play video games.

What are the typical buttons on it?

Arrows - up down left right

Select

etc

Gaming console offers an interface to play your games.

Who provides the implementation of what happens when a button is clicked? The game implementor - for example,

the implementor of Mario game or the Chess game.

How do you represent this in Java program?

GamingConsole.java

 package ;

 public interface GamingConsole {
 public void up();
 public void down();
 public void left();
 public void right();
 }

interface GamingConsole contains methods without definitions.

Who provides the implementations?

Welcome MarioGame .

MarioGame.java

 package ;

 public class MarioGame implements GamingConsole {
 @Override
 public void up() {
 System.out.println("Jump");
 }

 @Override
 public void down() {
 System.out.println("Go into a hole");
 }

 @Override
 public void left() {

com.in28minutes.oops.level2.interfaces

com.in28minutes.oops.level2.interfaces

 }

 @Override
 public void right() {
 System.out.println("Go Forward");
 }
 }

MarioGame provides a definition for all the methods declared in the interface GamingConsole . Syntax is simple.
class MarioGame implements GamingConsole and implement all the methods.

Let's look at how you can run these games.

GameRunner.java

 package ;

 public class GameRunner {
 public static void main(String[] args) {
 MarioGame game = new MarioGame();
 game.up();
 game.down();
 game.left();
 game.right();
 }
 }

Console Output

Jump

Go into a hole

Go forward

Snippet-01 Explained

The main advantage of having an interface is that it can be used to enforce a contract for its implementors.

Snippet-02 : Code Reuse With Interfaces

Let's look at another example - ChessGame .

ChessGame.java

 package ;

 public class ChessGame implements GamingConsole {

 @Override
 public void up() {
 System.out.println("Move Piece Up");
 }

 @Override
 public void down() {
 System.out.println("Move Piece Down");
 }

 @Override
 public void left() {
 System.out.println("Move Piece Left");

com.in28minutes.oops.level2.interfaces

com.in28minutes.oops.level2.interfaces

 }

 @Override
 public void right() {
 System.out.println("Move Piece Right");
 }
 }

Running it is simple. All that you need to do is to comment out MarioGame game = new MarioGame(); and replace it

with an implementation of ChessGame .

GameRunner.java

 package ;

 public class GameRunner {
 public static void main(String[] args) {
 //MarioGame game = new MarioGame();
 ChessGame game = new ChessGame();
 game.up();
 game.down();
 game.left();
 game.right();
 }
 }

Console Output

Move Piece Up

Move Piece Down

Move Piece Left

Move Piece Right

Snippet-2 explained

In the same GamerRunner class , if we now instantiate a ChessGame object instead of a MarioGame one, none of

the other code needs to change. This is because both MarioGame and ChessGame implement the same

interface , GamingConsole .

Using Interface as type for reference variable

GamingConsole is an interface. MarioGame and ChessGame are it's implementations.

Let's try this - GamingConsole game = new ChessGame();

GameRunner.java

 package ;

 public class GameRunner {
 public static void main(String[] args) {
 GamingConsole game = new ChessGame();
 game.up();
 game.down();
 game.left();
 game.right();
 }
 }

com.in28minutes.oops.level2.interfaces

com.in28minutes.oops.level2.interfaces

Console Output

Move Piece Up

Move Piece Down

Move Piece Left

Move Piece Right

Explained

GamingConsole game = new ChessGame(); - You can store an implementation of an interface into a reference

variable of the type of the interface.

How does this help?

Let's look at the next example:

Snippet-4 : GameRunner Version 4

GameRunner.java

 package ;

 public class GameRunner {
 public static void main(String[] args) {
 GamingConsole game = new MarioGame();
 game.up();
 game.down();
 game.left();
 game.right();
 }
 }

Console Output

Jump

Go into a hole

Go forward

Snippet-04 Explained

You can replace GamingConsole game = new ChessGame() with GamingConsole game = new MarioGame() and now

the program runs the MarioGame . Isn't it awesome?

Step 18: Using Interfaces To Design APIs

Consider a Software Development project, which involves programming a fairly large and complex application.

Project team (Team A) decided to out-source part of this project to an external team (Team B). Let's say this

external team needs to implement a farily complex algorithm to achieve a specific task, and which needs to

interface with the rest of the application. Work on both parts of the application needs to proceed simultaneously.

Suppose the algorithm logic is implemented using a single method:

 int complexAlgorithm(int number1, int number2);

How do we ensure that the work done by both the teams remains compatible?

com.in28minutes.oops.level2.interfaces

They start with defining an interface.

ComplexAlgorithm.java

 package ;

 public interface ComplexAlgorithm {
 int complexAlgorithm(int number1, int number2);
 }

Now the teams can go on their merry way. Team A can create a stub for the interface OneComplexAlgorithm and

start working on their project.

OneComplexAlgorithm.java

 package ;

 public class OneComplexAlgorithm {
 public int complexAlgorithm(int number1, int number2) {
 return number1 + number2;
 }
 }

Team B can take time to implement the actual algorithm.

ActualComplexAlgorithm.java

 package ;

 public class ActualComplexAlgorithm {
 public int complexAlgorithm(int number1, int number2) {
 //Your complex implementation will be present here..
 return number1 * number2;
 }
 }

Step 19: Interfaces - Puzzles And Interesting Facts

Let's look at a few examples to understand interfaces further.

An interface can be extended by another interface . We can have an inheritance hierarchy purely consisting of
interfaces.

 jshell> interface InterfaceOne {
 ...> void methodOne();
 ...> }
 | created interface InterfaceOne

 jshell> interface InterfaceTwo extends InterfaceOne {
 ...> void methodTwo();
 ...> }
 | created interface InterfaceTwo

An implementation of interface should implement all its methods including the methods in its super interfaces.

com.in28minutes.oops.level2.interfaces

com.in28minutes.oops.level2.interfaces

com.in28minutes.oops.level2.interfaces

If a class is declared as abstract, it can skip providing implementations for all interface methods.

 jshell> public abstract class AbstractImplementation implements InterfaceTwo {
 ...> public void methodOne() {}
 ...> }
 | created class AbstractImplementation

interfaces cannot have member variables. An interface can only have declared constants

 jshell> interface InterfaceThree {
 ...> int test;
 ...> }
 | Error:
 | = expected
 | int test;
 |_________^

 jshell> interface InterfaceThree {
 ...> int test = 5;
 ...> }
 | created interface InterfaceThree

Starting from Java SE 8, an interface can provide a default implementation of the methods it provides. It can be

done by including the keyword default in the signature of that method, and providing a body to that method in its

definition.

 jshell> interface InterfaceFour {
 ...> public default void print() {
 ...> System.out.println("default print");
 ...> }
 ...> }
 | created interface InterfaceFour

 jshell> class TestPrint implements InterfaceFour {
 ...> }
 | created class TestPrint

 jshell> TestPrint testPrint = new TestPrint();
 testPrint ==> TestPrint@6ebc05a6

 jshell> class Implementation implements InterfaceTwo {
 ...>}
 | Error:
 | Implementation is not abstract and does not implement abstract method methodTwo() of Interf
 | class Implementation implements InterfaceTwo {
 |^---...

 jshell> public class Implementation implements InterfaceTwo {
 ...> public void methodTwo() {}
 ...> }
 | Error:
 | Implementation is not abstract and does not implement abstract method methodOne() of Interf
 | class Implementation implements InterfaceTwo {
 |^---...

 jshell> public class Implementation implements InterfaceTwo {
 ...> public void methodTwo() {}
 ...> public void methodOne() {}
 ...> }
 | created class Implementation

 jshell> testPrint.print();
 default print

Implementations of interface can override the default method implementation.

 jshell> class ParticularPrint implements InterfaceFour {
 ...> public void print() {
 ...> System.out.println("particular print");
 ...> }
 ...> }
 | created class ParticularPrint

 jshell> ParticularPrint particularPrint = new ParticularPrint();
 particularPrint ==> ParticularPrint@5fad14c4
 jshell> particularPrint.print();
 particular print
 jshell>

No method declared inside an interface can be qualified with the private access specifier. However, an

abstract class can have private methods declared within.

Why do we need default method implementations.

Let's consider a Provider interface with three implementations.

 public interface Provider {
 public void doSomething();
 }

 public class ImplementorOne {
 @Override
 public void doSomething() {
 System.out.println("Do One");
 }
 }

 public class ImplementorTwo {
 @Override
 public void doSomething() {
 System.out.println("Do Two");
 }
 }

 public class ImplementorThree {
 @Override`
 public void doSomething() {
 System.out.println("Do Three");
 }
 }

What happens if a new method is added to the interface ?

 public interface Provider {
 public void doSomething();
 public void doMore();
 }

Compilation Error! All implementations classes ImplementationOne , ImplementationTwo and

ImplementationThree must me updated to implement doMore() in each case.

Alternative : provide a default implementation for doMore .

 public interface Provider {
 public void doSomething();

 public default void doMore(){
 System.out.println("Do More");
 }
 }

No other code needs to immediately change, and specific implementation classes can override this default version,

as and when needed.

This is especially useful in building and extending frameworks. You are not breaking a user of your framework

interface when you add new methods to the interface.

Step 20: abstract class And interface : A Comparison

abstract class and interface are very different, except that they have a very similar syntax.

When would you want to use them in your application?

interface

interface is a Contract.

An interface is primarily used when you have two software components that need to communicate with each

other, and there is a need to establish a contract.

Recall the following example: ComplexAlgorithm defines the interface which helps both the teams involved.

 package ;
 public interface ComplexAlgorithm {
 int complexAlgorithm(int number1, int number2);
 }

abstract class

An abstract class is primarily used when you want to generalize behavior by creating a super class.

Recall the following example we had discussed:

 public abstract class AbstractRecipe {
 public void execute() {
 prepareIngredients();
 cookRecipe();
 cleanup();
 }

 abstract void prepareIngredients();
 abstract void cookRecipe();
 abstract void cleanup();
 }

com.in28minutes.oops.level2.interfaces

Syntactical Comparison

Here are important syntactical differences:

No method declared inside an interface can be qualified with a private access specifier. However, an

abstract class can have private methods.

An interface cannot have declared member variables. An abstract class can have member variable

declarations.

A class or an abstract class can implement multiple interface s. But, an interface can extend only one

interface , and a class or an abstract class can extend only one class or abstract class .

Step 21: Programming Exercise PE-OOP-03

Exercises

TODO

Solution To PE-OOP-03

Solution - 1

Solution - 2

Step 21: Introducing Polymorphism

TODO

Introducing Collections

Arrays are not dynamic data structures. They can store only a fixed maximum number of elements.

Inserting or removing elements into an array needs a lot of work.

Collections are in-built implementations available to support dynamic data structures in Java programs. The

commonly used collections are based on Lists, Trees and Hash Tables.

Java provides very good collection implementations.

To make it simple to understand all collections, we will start with the interfaces - such as List , Set , Queue , Map
and others.

After that, we will look at implementations of these interfaces, such as LinkedList , HashTable and TreeMap ,
among others.

The Collection Interfaces

Let's start with the List interface

The List interface

The List interface is used to implement an ordered collection in Java programs. An ordered collection is one,

where the programmer has control over the position where an element can be inserted into, or accessed from the

collection.

If an element's insertion position is not specified, it is added at the end of the List .

A List typically allows duplicate elements.

Snippet-1 : Creating a List

We can see examples of creating a list and accessing element data below:

 jshell> List<String> words = List.of("Apple", "Bat", "Cat");
 words ==> [Apple, Bat, Cat]
 jshell> words.size()
 $1 ==> 3
 jshell> words.isEmpty()
 $2 ==> false
 jshell> words.get(0)
 $3 ==> Apple
 jshell> words.contains("Dog")
 $4 ==> false
 jshell> words.contains("Cat")
 $5 ==> true
 jshell> words
 words ==> [Apple, Bat, Cat]
 jshell> words.indexOf("Cat")
 $6 ==> 2
 jshell> words.indexOf("Dog")
 $7 ==> -1
 jshell>

List Immutability

Consider the List words we created in the last snippet.

List<String> words = List.of("Apple", "Bat", "Cat");

Lists created using the static of method are immutable.

 jshell> List<String> words = List.of("Apple", "Bat", "Cat");
 words ==> [Apple, Bat, Cat]
 jshell> words.add("Dog");
 | java.lang.UnsupportedOperationExcetion thrown:
 | at ImmutableCollections.uoe (ImmutableCollections.java:71)
 | at ImmutableCollections$AbstractImmutableList.add (ImmutableCollections.java:77)
 | at (#15:1)
 jshell>

Creating A Mutable List s

The way to create List data structures that can be updated over time, is to instantiate built-in collection
classes that implement the List interface.

Examples are ArrayList , LinkedList and Vector .

Snippet-3: Mutable Lists

Let's look at a few examples:

 jshell> List<String> words = List.of("Apple", "Bat", "Cat");
 words ==> [Apple, Bat, Cat]

 jshell> List<String> wordsArrayList = new ArrayList<String>(words);
 wordsArrayList ==> [Apple, Bat, Cat]

 jshell> List<String> wordsLinkedList = new LinkedList<String>(words);
 wordsLinkedList ==> [Apple, Bat, Cat]

 jshell> List<String> wordsVector = new Vector<String>(words);

 wordsVector ==> [Apple, Bat, Cat]

 jshell> wordsArrayList.add("Dog");
 $1 ==> true

 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Cat, Dog]

 jshell>

ArrayList vs LinkedList

ArrayList uses an array to store elements.

Positional access and modification of elements is very efficient, with constant-time algorithmic complexity.

Insertion and deletion of elements are expensive. In a 20 element list, to insert an element at first position, all

20 elements should be moved.

The data structure used to implement a LinkedList is of the type linked-list, which is a chain of blocks of memory

slots.

Inserting and Deleting values is easy. This is because in a chain of blocks, each link is nothing but a reference

to the next block. Insertion only involves adjustment of these links to accommodate new values, and does not

require extensive copying and shifting of existing elements.

Positional access and modification of elements is less efficient than in an ArrayList , because access always
involves traversal of links.

Optimization: the underlying data structure for a LinkedList is actually a doubly-linked list, with each element

having both forward and backward links to elements around it.

Vector vs ArrayList

Vector has been with Java since v1.0, whereas ArrayList was added later, in v1.2. Both of them use an array as

the underlying data structure.

Vector is thread-safe. In Vector , all methods are synchronized .

Look at other thread safe List implementations as Vector has poor concurrency.

List Operations

We will examine common List operations on an ArrayList . Similar operations can also be done on a
LinkedList or a Vector .

Snippet-4 : List Insertions

We look at examples for

Insertion at end (default)

Positional insertion

Inserting duplicate entries is allowed

Adding all elements of an external list, to the current list

At the end

Positional insertion is also available, as in single element insertion

 jshell> List<String> words = List.of("Apple", "Bat", "Cat");
 words ==> [Apple, Bat, Cat]
 jshell> List<String> wordsArrayList = new ArrayList<String>(words);
 wordsArrayList ==> [Apple, Bat, Cat]

 jshell> wordsArrayList.add("Dog");
 $1 ==> true
 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Cat, **Dog**]
 jshell> wordsArrayList.add("Elephant");
 $2 ==> true
 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Cat, Dog, **Elephant**]
 jshell> wordsArrayList.add(2, "Ball");
 *jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, **Ball**, Cat, Dog, Elephant]
 jshell> wordsArrayList.add("Ball");
 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Ball, Cat, Dog, Elephant, **Ball**]
 jshell> List<String> newList = List.of("Yak", "Zebra");
 newList ==> [Yak, Zebra]
 jshell> wordsArrayList.addAll(newList);
 $3 ==> true
 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Ball, Cat, Dog, Elephant, Ball, **Yak**, **Zebra**]
 jshell>

Snippet-5 : Element Modification

Let's look at examples of

Modifying elements at a specific position.

Deleting elements

 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Ball, Cat, Dog, Elephant, Ball, Yak, Zebra]
 jshell> wordsArrayList.set(6, "Fish");
 $4 ==> "Ball"
 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Ball, Cat, Dog, Elephant, **Fish**, Yak, Zebra]
 jshell> wordsArrayList.remove(2);
 $5 ==> "**Ball**"
 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Cat, Dog, Elephant, Fish, Yak, Zebra]
 jshell> wordsArrayList.remove("Dog");
 $6 ==> true
 jshell> wordsArrayList
 wordsArrayList ==> [Apple, Bat, Cat, Elephant, Fish, Yak, Zebra]
 jshell> wordsArrayList.remove("Dog");
 $6 ==> false
 jshell>

Snippet-6 : Iterating within ArrayList

Let's now look at how to iterate around the contents of a List

Basic for loop:

 jshell> List<String> words = List.of("Apple", "Bat", "Cat");
 words ==> [Apple, Bat, Cat]
 jshell> for(int i=0; i<words.size(); i++) {
 ...> System.out.println(words.get(i));
 ...> }
 Apple
 Bat
 Cat

Using enhanced for loop:

 jshell> for(String word:words) {
 ...> System.out.println(word);
 ...> }
 Apple
 Bat
 Cat

Using iterators:

 jshell> Iterator wordsIterator = words.iterator();
 wordsIterator ==> java.util.AbstractList$Itr@3712b94
 jshell> while(wordsIterator.hasNext()) {
 ...> System.out.println(wordsIterator.next());
 ...> }
 Apple
 Bat
 Cat

Choosing Between Iteration Modes

For non-mutating iterations, an enhanced for loop is the most convenient

For mutating iterations:

Deletions: An enhanced for loop is not recommended, as we saw in the example. "Bat" was removed, but

"Cat" was not, because the iteration itself was affected.

Iterators can be used for such iterations.

Snippet-6

 jshell> List<String> words = List.of("Apple", "Bat", "Cat");
 words ==> [Apple, Bat, Cat]
 jshell> List<String> wordsAL = new ArrayList<>(words);
 wordsAL ==> [Apple, Bat, Cat]
 jshell> for(String word:words) {
 ...> if(word.endsWith("at"))
 ...> System.out.println(word);
 ...> }
 ...> }
 Bat
 Cat
 jshell> for(String word:wordsAL) {
 ...> if(word.endsWith("at"))
 ...> wordsAL.remove(word);
 ...> }
 ...> }
 jshell> wordsAL
 wordsAL ==> [Apple, Cat]
 jshell> Iterator wordsIterator = wordsAL.iterator();
 wordsIterator ==> java.util.AbstractList$Itr@3712b94
 jshell> while(wordsIterator.hasNext()) {
 ...> if(wordsIterator.next().endsWith("at")){
 ...> wordsIterator.remove();
 ...> }
 ...> }
 jshell> wordsAL
 wordsAL ==> [Apple]
 jshell>

List : Type Safety

A List collection does not store primitives. It only stores object references. When we attempt to store primitive

types, such as those of int , char or double , they get implicitly converted to their wrapper class types, namely
Integer , Character and Double respectively. Primitive data type elements get auto-boxed.

Snippet-7 : Type safety

The ArrayList.indexOf() method is not overloaded, there is only one version. SO, when passed an int
argument, it is auto-boxed to an Integer object, and the method gets executed.

However, the ArrayList.remove() method has two overloaded versions:

ArrayList.remove(int index) : attempts to delete an element at the specified index in the ArrayList

ArrayList.remove(Object o) : attempts to delete the specified element, if ti is present in the ArrayList
.

 jshell> List values = List.of("A", 'A', 1, 1.0);
 values ==> ["A", 'A', 1, 1.0]
 jshell> values.get(2)
 $1 ==> 1
 jshell> values.get(2) instanceof Integer
 $2 ==> true
 jshell> values.get(1) instanceof Character
 $3 ==> true
 jshell> values.get(3) instanceof Double
 $4 ==> true
 jshell> List<String> textValues = List.of("A", 'A', 1, 1.0);
 | Error
 | Error
 | List<String> textValues = List.of("A", 'A', 1, 1.0);
 |___________________________^------------------------^
 jshell> List<Integer> numbers = List.of(101, 102, 103, 104, 105);
 numbers ==> [101, 102, 103, 104, 105]
 jshell> numbers.indexOf(101)
 $5 ==> 0
 jshell> List<Integer> numbersAL = new ArrayList<>(numbers);
 numbersAL ==> [101, 102, 103, 104, 105]
 jshell> numbersAL.indexOf(101)
 $6 ==> 0
 jshell> numbersAL.remove(101)
 java.lang.IndexOutOfBoundsException!!
 jshell> numbersAL.remove(Integer.valueOf(101))
 $7 ==> true
 jshell> numbersAL
 numbersAL ==> [102, 103, 104, 105]
 jshell>

Sorting a List

Snippet-8 : List sort

The List obtained from List.of() is immutable, hence cannot be sorted itself. Hence, create a mutable

ArrayList out of it.

The ArrayList.sort() method requires the definition of a Comparator object. Easier option is to use

Collections.sort() instead.

 jshell> List<Integer> numbers = List.of(123, 12, 3, 45);
 numbers ==> [123, 12, 3, 45]
 jshell> List<Integer> numbersAL = new ArrayList<>(numbers);
 numbersAL ==> [123, 12, 3, 45]

 jshell> numbersAL.sort();
 | Error:
 | required: java.util.Comparator<? super java.lang.Integer>
 | numbersAL.sort();
 |^-------------^
 jshell> Collections.sort(numbersAL);
 jshell> numbersAL
 numbersAL ==> [3, 12, 45, 123]
 jshell>

Sorting List

Snippet-9 : Sorting List

Let's create a Student class and try to sort it using Collections.sort

Student.java

 package ;

 public class Student {
 private int id;
 private String name;

 public Student(int id, String name) {
 super();
 this.id = id;
 this.name = name;
 }

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String toString() {
 return id + " " + name;
 }
 }

StudentsCollectionRunner.java

 package ;
 import Collections;
 import List;
 import ArrayList;

 public class StudentsCollectionRunner {
 public static void main(String[] args) {
 List<Student> students = List.of(new Student(1, "Ranga"),
 new Student(100, "Adam"),
 new Student(2, "Eve"));

collections

collections
java.util.
java.util.
java.util.

 ArrayList<Student> studentsAl = new ArrayList<>(students);
 System.out.println(studentsAl);
 Collections.sort(studentsAl);
 System.out.println(studentsAl);
 }
 }

Console Output

COMPILER ERROR

Snippet-9 Explained

To the method Collections.sort() , only those List s can be passed, the type of whose elements T ,
implements the Comparator<? super T> interface .

Student does not implement the interface. Result - Compilatino error.

Snippet-10 : Implementing Comparator Interface

StudentsCollection.java

 package ;
 import Comparable;

 public class Student implements Comparable<Student> {
 // Same as earlier
 @Override
 public int compareTo(Student that) {
 return Integer.compare(this.id, that.id);
 }
 }

StudentsCollectionRunner.java

 package ;
 import Collections;
 import List;
 import ArrayList;

 public class StudentsCollectionRunner {
 public static void main(String[] args) {
 List<Student> students = List.of(new Student(1, "Ranga"),
 new Student(100, "Adam"),
 new Student(2, "Eve"));
 ArrayList<Student> studentsAl = new ArrayList<>(students);
 System.out.println(studentsAl);
 Collections.sort(studentsAl);
 System.out.println(studentsAl);
 }
 }

Console Output

[1 Ranga, 100 Adam, 2 Eve]

[1 Ranga, 2 Eve, 100 Adam]

Snippet-10 Explained

Integer.compare(x, y) returns the value 0 if x == y; a value less than 0 if x < y; and a value greater than 0 if x > y.

collections
java.util.

collections
java.util.
java.util.
java.util.

If you change the order of parameters:

 @Override
 public int compareTo(Student that) {
 return Integer.compare(that.id, this.id);
 }

Output changes to:

[100 Adam, 2 Eve, 1 Ranga]

The Comparator interface

What if there is a need for sorting Student's in multiple ways? What if we want to sort Students in ascending order

of id's in some situations and in descending order of id's in some other situations?

Collections.sort has an overloaded version that has a signature that looks like:

 @SuppressWarnings({"unchecked", "rawtypes" })
 public static <T> sort(List<T> list, Comparator<? super T> c)
 list.sort(c);
 }

To be able to invoke this version of Collections.sort , we will need to define a suitable Comparator
implementation, that works with Student objects.

As you may have already guessed, we would need to define two different Comparator implementations: one for

ascending sort, and another for descending sort.

Snippet-11 : Implementing Student Comparators

 package ;
 import Collections;
 import List;
 import ArrayList;
 import Comparator;

 class DescStudentComparator implements Comparator<Student> {
 @Override
 public int compare(Student student1, Student student2) {
 return Integer.compare(student2.getId(), student1.getId());
 }
 }

 public class StudentsCollectionRunner {
 public static void main(String[] args) {
 List<Student> students = List.of(new Student(1, "Ranga"),
 new Student(100, "Adam"),
 new Student(2, "Eve"));
 ArrayList<Student> studentsAl = new ArrayList<>(students);
 System.out.println(studentsAl);
 Collections.sort(studentsAl);
 System.out.println("Ascending : " + studentsAl);
 Collections.sort(studentsAl, new DescStudentComparator());
 System.out.println("Descending : " studentsAl);
 }
 }

collections
java.util.
java.util.
java.util.
java.util.

Console Output

[1 Ranga, 100 Adam, 2 Eve]

Ascending : [1 Ranga, 2 Eve, 100 Adam]

Descending : [100 Adam, 2 Eve, 1 Ranga]

sort method Of List

You can call sort method on the List by passing it a Comparator implementation - studentsAl.sort(new
AscStudentComparator()) .

Snippet-12 : Comparator for ArrayList.sort()

StudentsCollectionRunner.java

 package ;
 import Collections;
 import List;
 import ArrayList;
 import Comparator;

 public class StudentsCollectionRunner {
 public static void main(String[] args) {
 List<Student> students = List.of(new Student(1, "Ranga"),
 new Student(100, "Adam"),
 new Student(2, "Eve"));

 ArrayList<Student> studentsAl = new ArrayList<>(students);
 System.out.println(studentsAl);
 studentsAl.sort(new AscStudentComparator());
 System.out.println("Asc : " + studentsAl);
 studentsAl.sort(new DescStudentComparator());
 System.out.println("Desc : " + studentsAl);
 }
 }

Console Output

[1 Ranga, 100 Adam, 2 Eve]

Asc : [1 Ranga, 2 Eve, 100 Adam]

Desc : [100 Adam, 2 Eve, 1 Ranga]

The Set interface

Mathematically, a set is a collection of unique items. Similarly, the Java Set interface also specifies a contract

for collections having unique elements.

If object1.equals(object2) returns true , then only one of object1 and object2 have a place in a Set
implementation.

There is no positional element access provided by the Set implementations.

Snippet-13 : Set

Let's look at a few examples:

The collection returned by Set.of() is immutable, hence does not support the add() method.

collections
java.util.
java.util.
java.util.
java.util.

 jshell> Set<String> set = Set.of("Apple", "Banana", Cat");
 set ==> [Banana, Apple, Cat]

Create a HashSet collection instead, which supports the add() , in order to test the uniqueness property of a
Set .

 jshell> set.add("Apple");
 | java.lang.UnsupportedOperationException thrown:
 jshell> Set<String> hashSet = new HashSet<>(set);
 hashSet ==> [Apple, Cat, Banana]

The HashSet.add() operation returns a false value, indicating that inserting a duplicate "Apple" entry has failed.

 jshell> hashSet.add("Apple");
 $1 ==> false
 jshell> hashSet
 hashSet ==> [Apple, Cat, Banana]

Note that when the hashSet was constructed using the set , the order of the elements got permuted/changed.
Also originally, when we created the set from the Set.of() method, the order printed was different from the

order of initialization. This confirms the fact that a Set collection does not give any importance to element order,

and therefore, does not support positional access. Hence, the compiler error on call to hashSet.add(int,
String) .

 jshell> hashSet.add(2, "Apple");
 | Error:
 | no suitable method found for add(int, java.lang.String)
 | hashSet.add(2, "Apple");
 |^----------^
 jshell>

Understanding Data Structures

Hash Table

Hash Table: A data structure that attempts to combine the best of both worlds:

Very efficient element access

Very efficient element insertion and deletion

Buckets : They are the slots in the hash table, into which elements are inserted and chained together. As you

can see, a hash table is effectively a large array of buckets, each containing a small linked list.

Hashing: A procedure called hashing used in the construction of the Hash Table. The term hash generally

means mix up the order of elements.

Hashing Function: A formula to determine/compute which bucket a particular element gets inserted into. For

illustration: hash(elem) could compute elem mod 13 mathematically, and uses that value to index into the

table, to locate the bucket insertion. The Object.hashCode() could be used as a hashing function.

Collisions: Leads to chaining within a bucket, where a linked list grows. The larger the table, and the cleverer

the hashing function, the lesser the chance for collisions.

Tree

Tree: Stores elements in sorted order. For every node in the tree, elements of all nodes in its left sub-tree are

lesser than its contained element. Conversely, elements of all nodes in its right sub-tree are greater than its

contained element.

Insertions: Given any node, we know by comparing the new element with the node's element, where to go

about inserting it, to maintain sorted order.

Access : More efficient than linked lists.

Set Implementations

HashSet

LinkedHashSet

TreeSet

Snippet-14 : HashSet

In a HashSet , elements are neither stored in the order of insertion, nor in sorted order.

 jshell> Set<Integer> numbers = new HashSet<>();
 numbers ==> []
 jshell> numbers.add(765432);
 $1 ==> true
 jshell> numbers.add(76543);
 $2 ==> true
 jshell> numbers.add(7654);
 $3 ==> true
 jshell> numbers.add(765);
 $4 ==> true
 jshell> numbers.add(76);
 $5 ==> true
 jshell> numbers
 numbers ==> [765432, 7654, 76, 765, 76543]
 jshell>

Snippet-15 : LinkedHashSet

In a LinkedHashSet , elements are stored in the order of insertion.

 jshell> Set<Integer> numbers = new LinkedHashSet<>();
 numbers ==> []
 jshell> numbers.add(765432);
 $1 ==> true
 jshell> numbers.add(76543);
 $2 ==> true
 jshell> numbers.add(7654);
 $3 ==> true
 jshell> numbers.add(765);
 $4 ==> true
 jshell> numbers.add(76);
 $5 ==> true
 jshell> numbers
 numbers ==> [765432, 76543, 7654, 765, 76]
 jshell> numbers.add(7654321);
 $5 ==> true
 jshell> numbers
 numbers ==> [765432, 76543, 7654, 765, **7654321**]
 jshell>

Snippet-16 : TreeSet

In a TreeSet , elements are stored in sorted order.

 jshell> Set<Integer> numbers = new TreeSet<>();
 numbers ==> []
 jshell> numbers.add(765432);
 $1 ==> true
 jshell> numbers.add(76543);
 $2 ==> true
 jshell> numbers.add(7654);
 $3 ==> true
 jshell> numbers.add(765);
 $4 ==> true
 jshell> numbers.add(76);
 $5 ==> true
 jshell> numbers
 numbers ==> [76, 765, 7654, 76543, 765432]
 jshell> numbers.add(7);
 $5 ==> true
 jshell> numbers
 numbers ==> [**7**, 76, 765, 7654, 76543, 765432]
 jshell>

Exercise Set

�. Create a ```List`` of characters, such as:

List<Character> list = List.of('A', 'Z', 'A', 'B', 'Z, 'F);

Write a procedure to list out the unique characters in this list

Write a procedure to list out these unique characters in sorted order

Write a procedure to list out these unique characters in the order in which they were present in the original list

Solution

SetRunner.java

 package ;
 import List;
 import .util.Set;
 import HashSet;
 import LinkedHashSet;
 import TreeSet;

 public class SetRunner {
 public static void main(String[] args) {
 List<Character> characters = List.of('A', 'Z', 'A', 'B', 'Z, 'F);
 Set<Character> hashSetChars = new HashSet<>(characters);
 System.out.println("Unique Characters: " + hashSetChars);
 Set<Character> treeSetChars = new TreeSet<>(characters);
 System.out.println("Sorted Order: " + treeSetChars);
 Set<Character> linkedSetChars = new LinkedHashSet<>(characters);
 System.out.println("Inserted Order: " + linkedSetChars);
 }
 }

Console Output

Unique Characters: [A, B, F, Z]

Sorted Order: [A, B, F, Z]

collections
java.util.
java
java.util.
java.util.
java.util.

Inserted Order: [A, Z, B, F]

Solution Explained

In this example, the order to elements traversed in hashSetChars happened to be the same as that in

treeSetChars . Such an order is not always guaranteed, as we saw in the earlier examples.

TreeSet In Depth

Super-Interfaces

Set

NavigableSet

Snippet-16 : NavigableSet Operations

Let's look at few operations:

 jshell> TreeSet<Integer> numbers = new TreeSet<>(Set.of(65, 54, 34, 12, 99));
 numbers ==> [12, 34, 54, 65, 99]
 jshell> numbers.floor(40);
 $1 ==> 34

floor() method is inclusive, lower() is exclusive

 jshell> numbers.floor(34);
 $2 ==> 34
 jshell> numbers.lower(34);
 $3 ==> 12

ceiling() method is inclusive, higher() is exclusive

 jshell> numbers.ceiling(36);
 $4 ==> 54
 jshell> numbers.ceiling(34);
 $5 ==> 34
 jshell> numbers.higher(34);
 $6 ==> 54

subSet(Object, Object) method is only lower-inclusive. So, the left bound is like lower() , and right bound is like
higher() . The overloaded version subSet(Object, boolean, Object, boolean) can be used to configure lower-

and upper inclusiveness of the returned subset.

 jshell> numbers.subSet(20, 80);
 $7 ==> [34, 54, 65]
 jshell> numbers.subSet(34, 54);
 $8 ==> [34]
 jshell> numbers.subSet(34, 65);
 $9 ==> [34, 54]
 jshell> numbers.subSet(34, true, 65, true);
 $10 ==> [34, 54, 65]
 jshell> numbers.subSet(34, false, 65, false);
 $11 ==> [54]

headSet() returns the subset of elements preceding the given element value. tailsSet() returns the subset of

elements succeeding the given element value

 jshell> numbers.headSet(50);
 $12 ==> [12, 34]
 jshell> numbers.tailSet(50);
 $13 ==> [54, 65, 99]
 jshell>

The Queue Interface

Queue interface : extends the Collection interface .

Elements are arranged in order of processing, such as in a To-Do List.

The PriorityQueue Collection

The PriorityQueue collection is a built-in Java class , that implements the Queue interface . Elements are
stored in a sorted natural order, by default. We can also specify a different custom order, called the order of priority

(customized by the programmer).

Snippet-17 : PriorityQueue

The PriorityQueue queue stores the strings in ascending alphabetic order by default.

queue.poll() de-queue's the element at the beginning of the natural order

 jshell> Queue<String> queue = new PriorityQueue<>();
 numbers ==> [12, 34, 54, 65, 99]
 jshell> queue.poll();
 $1 ==> null
 jshell> queue.offer("Apple");
 $2 ==> true
 jshell> queue.addAll(List.of("Zebra", "Monkey", "Cat"));
 $3 ==> true
 jshell> queue
 queue ==> [Apple, Cat, Monkey, Zebra]
 jshell> queue.poll();
 $4 ==> "Apple"
 jshell> queue
 queue ==> [Cat, Monkey, Zebra]
 jshell> queue.poll();
 $5 ==> "Cat"
 jshell> queue.poll();
 $6 ==> "Monkey"
 jshell> queue.poll();
 $7 ==> "Zebra"
 jshell> queue.poll();
 $8 ==> null
 jshell>

Snippet-18 : Custom Priority PriorityQueue

A custom priority order on the elements in a PriorityQueue can be specified by passing an implementation of

Comparator<? super T> interface to the PriorityQueue<T> constructor.

Let's implement a StringLengthComparator .

QueueRunner.java

 package ;
 import Comparator;
 import List;

collections
java.util.
java.util.

 import Queue;
 import PriorityQueue;

 class StringLengthComparator implements Comparator<String> {
 @Override
 public int compare(String left, String right) {
 return Integer.compare(left.length(), right.length());
 }
 }

 public class QueueRunner {
 public static void main(String[] args) {
 Queue<String> queue = new PriorityQueue<>(new StringLengthComparator());
 queue.addAll(List.of("Zebra", "Monkey", "Cat"));
 queue.poll();
 queue.poll();
 queue.poll();
 queue.poll();
 }
 }

Console Output

Cat

Zebra

Monkey

null

The Map interface

The Map interface specifies a contract to implement collections of elements, that are in the form of (key,
value) pairs.

Let's say you want to store how many times a character is repeated in a sequence of characters.

If the sequence inserted is: {'A', 'C', 'A', 'C', 'E', 'C', 'M', 'D', 'H', 'A'}

The map contents would end up being: {('A', 3), ('C', 3), ('E', 1), ('M', 1), ('D', 1), ('H', 1)} .

Since the kind of elements stored in a map ((key, value) pairs) are different from any other collection categories

in Java, the Map interface is unique. So unique, that it even does not extend the Collection interface !

The interface definition looks something like:

 public interface Map<K, V> {

 //Method Declarations

 }

The Java collection classes that implement the Map interface are:

HashMap

HashTable

LinkedHashMap

TreeMap

Map Collections : Concepts

HashMap

java.util.
java.util.

Unordered

Unsorted

Key's hashCode() value is used in the hashing function

Allows a key with a null value.

HashTable

Thread-safe version of HashMap . Has synchronized methods where required.

Unordered

Unsorted

Key's hashCode() value is used in the hashing function

Does not allow a null key.

LinkedHashMap

Insertion order of elements is maintained (which is optional as well)

Unsorted

Iteration is faster

Insertion and Deletion are slower

TreeMap

Additionally implements the NavigableMap interface

Elements are maintained in sorted order of keys

Map interface : Basic Operations

Snippet-19 : Basic Map Operations

The Map.of() method takes a sequence of objects, which are interpreted as being key and value entries in

alternation.

The total number of arguments is expected to be an even number.

This method creates an immutable Map , with the (key, value) pairs in no specific order.

 jshell> Map<String, Integer> map = Map.of("A", 3, "B", 5, "Z", 10);
 map ==> {Z=10, A=3, B=5}
 jshell> map.get("Z");
 $1 ==> 10
 jshell> map.get("A");
 $2 ==> 3
 jshell> map.get("C");
 $3 ==> null
 jshell> map.size();
 $4 ==> 3
 jshell> map.isEmpty();
 $5 ==> false
 jshell> map.containsKey("A");
 $6 ==> true
 jshell> map.containsKey("F");
 $7 ==> false
 jshell> map.containsValue(3);
 $8 ==> true
 jshell> map.containsValue(4);
 $9 ==> false
 jshell> map.keySet();
 $10 ==> [Z, A, B]
 jshell> map.values();
 $11 ==> [10, 3, 5]
 jshell>

Snippet-20 : Mutable Maps

To be able to add values to a map, let's create a HashMap .

 jshell> Map<String, Integer> map = Map.of("A", 3, "B", 5, "Z", 10);
 map ==> {Z=10, A=3, B=5}
 jshell> Map<String, Integer> hashMap = new HashMap<>(map);
 hashMap ==> {A=3, Z=10, B=5}
 jshell> hashMap.put("F", 5);
 $1 ==> null
 jshell> hashMap
 hashMap ==> {A=3, Z=10, B=5, F=5}
 jshell> hashMap.put("Z", 11);
 $2 ==> 10
 jshell> hashMap
 hashMap ==> {A=3, Z=11, B=5, F=5}
 jshell>

Map Collections: Comparing Operations

Snippet-21 : Map Implementations

HashMap elements are not guaranteed to be stored either in inserted order, or in the sorted order of keys.

 jshell> HashMap<String, Integer> hashMap = new HashMap<>();
 hashMap ==> {}
 jshell> hashMap.put("Z", 5);
 $1 ==> null
 jshell> hashMap.put("A", 15);
 $2 ==> null
 jshell> hashMap.put("F", 25);
 $3 ==> null
 jshell> hashMap.put("L", 250);
 $4 ==> null
 jshell> hashMap
 hashMap ==> {A=15, F=25, Z=5, L=250}

LinkedHashMap elements are stored in inserted order.

 jshell> LinkedHashMap<String, Integer> linkedHashMap = new LinkedHashMap<>();
 linkedHashMap ==> {}
 jshell> linkedHashMap.put("Z", 5);
 $5 ==> null
 jshell> linkedHashMap.put("A", 15);
 $6 ==> null
 jshell> linkedHashMap.put("F", 25);
 $7 ==> null
 jshell> linkedHashMap.put("L", 250);
 $8 ==> null
 jshell> linkedHashMap
 hashMap ==> {Z=5, A=15, F=25, L=250}

TreeMap elements are stored in the natural sorted order of the keys.

 jshell> TreeMap<String, Integer> treeMap = new TreeMap<>();
 treeMap ==> {}
 jshell> treeMap.put("Z", 5);
 $9 ==> null
 jshell> treeMap.put("A", 15);

 $10 ==> null
 jshell> treeMap.put("F", 25);
 $11 ==> null
 jshell> treeMap.put("L", 250);
 $12 ==> null
 jshell> treeMap
 treeMap ==> {A=15, F=25, L=250, Z=5}
 jshell>

Exercise Set

�. Given the string: "This is an awesome occassion. This has never happened before." , do the following
processing on it:

Find the number of occurrences of each unique character in this string

Find the number of occurrences of each unique word in this string

Solution

MapRunner.java

 package ;
 import Map;
 import HashMap;

 public class MapRunner {
 public static void main(String[] args) {
 String str = "This is an awesome occassion. This has never happened before.";
 char[] characters = str.toCharArray();
 Map<Character, Integer> occurrences = new HashMap<>();
 for(char character:characters) {
 Integer count = occurrences.get(character);
 if(count == null) {
 occurrences.put(character, 1);
 } else {
 occurrences.put(character, count+1);
 }
 }
 System.out.println(occurrences);
 String words = text.split(" ");
 Map<String, Integer> frequency = new HashMap<>();
 for(String word:words) {
 Integer number = frequency.get(word);
 if(number == null) {
 frequency.put(word, 1);
 } else {
 frequency.put(word, number+1);
 }
 }
 System.out.println(frequency);
 }
 }

Revisiting TreeMap

Let's look at some more interesting operations of Data Structures based on TreeMap .

Snippet-13 : Treemap Operations

Entries in a TreeMap are always sorted.

jshell> TreeMap<String, Integer> treeMap = new TreeMap<>();

collections
java.util.
java.util.

treeMap ==> {}
jshell> treeMap.put("F", 25);
$1 ==> null
jshell> treeMap.put("Z", 5);
$2 ==> null
jshell> treeMap.put("L", 250);
$3 ==> null
jshell> treeMap.put("A", 15);
$4 ==> null
jshell> treeMap.put("B", 25)
$5 ==> null
jshell> treeMap.put("G", 25);
$6 ==> null
jshell> treeMap
treeMap ==> {A=15, B=25, F=25, G=25, L=250, Z=5}

TreeMap implements NavigableMap interface as well.

jshell> treeMap.higherKey("B");
$7 ==> "F"
jshell> treeMap.higherKey("C");
$8 ==> "F"
jshell> treeMap.ceilingKey("B");
$9 ==> "B"
jshell> treeMap.ceilingKey("C");
$10 ==> "F"
jshell> treeMap.lowerKey("B");
$11 ==> "A"
jshell> treeMap.floorKey("B");
$12 ==> "B"
jshell> treeMap.firstEntry();
$713 ==> A=15
jshell> treeMap.lastentry();
$14 ==> Z=5
jshell> treeMap.subMap("C", "Y");
$7 ==> {F=25, G=25, L=250}
jshell> treeMap.subMap("B", "Z");
$7 ==> {B=25, F=25, G=25, L=250}
jshell> treeMap.subMap("B", true, "Z", true);
$7 ==> {B=25, F=25, G=25, L=250, Z=5}
jshell>

Java Collections : Conclusions With Tips

The collection interfaces we have explored, as well as their implementation classes, are:

List

Set

Queue

Map

Let's quickly review what we've learnt:

When you use a "Hashed" Java collection (hash table based), such as HashMap or HashSet , it will be
unordered, unsorted and will iterate over its elements in no particular order.

When you encounter a "Linked" Java collection (linked list based), such as a LinkedHashSet or a

LinkedHashMap , it will maintain insertion order, but will be unsorted.

When we make use of a "Tree"-based Java collection (stored in a tree data structure), such as TreeSet or

TreeMap it always maintains natural sorted order. It would implement one of the navigable category of

interfaces, such as NavigableSet or NavigableMap .

Introducing Generics

Recommended Videos

Generics - https://www.youtube.com/watch?v=v4o0wyFPwEs

Why do we need Generics?

Let's look at a scenario where want to write a wrapper class around the ArrayList data structure, maybe to do

some better custom error-checking and stuff. For now, we will just look at basic wrapper functionality, the error

checking intent is just an excuse!

Snippet-1

GenericsRunner.java

 package ;
 import MyCustomList;

 public class GenericsRunner {
 public static void main(String[] args) {
 MyCustomList list = new MyCustomList();
 list.addElement("Element-1");
 list.addElement("Element-2");
 list.addElement("Element-3");
 }
 }

MyCustomList.java

 package ;

 public class MyCustomList {
 ArrayList<String> list = new ArrayList<>();

 public void addElement(String element) {
 list.add(element);
 }

 public void removeElement(String element) {
 list.remove(element);
 }
 }

Snippet-1 Explained

The MyCustomList class is a wrapper for ArrayList of String s. Insertion and deletion of elements into this
data structure is straightforward.

Let's sy I would want to create MyCustomList for other types. Should we write additional wrapper classes

MyCustomList and so on?

Let's look at an example:

Snippet-2 : Implementing a Generic

MyCustomList.java

com.in28minutes.generics
com.in28minutes.generics.

com.in28minutes.generics

https://www.youtube.com/watch?v=v4o0wyFPwEs

 package ;

 public class MyCustomList<T> {
 ArrayList<T> list = new ArrayList<>();

 public void addElement(T element) {
 list.add(element);
 }

 public void removeElement(T element) {
 list.remove(element);
 }

 public String toString() {
 return list.toString();
 }
 }

GenericsRunner.java

 package ;
 import MyCustomList;

 public class GenericsRunner {
 public static void main(String[] args) {
 MyCustomList<String> list = new MyCustomList<>();
 list.addElement("Element-1");
 list.addElement("Element-2");
 System.out.println(list);

 MyCustomList<Integer> list2 = new MyCustomList<>();
 list2.addElement(Integer.valueOf(5));
 list2.addElement(Integer.valueOf(9));
 System.out.println(list2);
 }
 }

Console Output

[Element-1, Element-2]

[5, 9]

Snippet-2 Explained

The identifier T in the definition of the Generic class MyCustomList<T> is a placeholder for the actual type of the

container. It is this placeholder that truly converts the MyCustomList class into a template.

The naming convention for these type placeholders is: * Always use UpperCase letters of the alphabet (such as T ,
or S), or * intuitive words such as TYPE

At the time of actual instantiation of MyCustomList inside GenericsRunner.main , this placeholder is substituted by
the actual type:

When MyCustomList<String> list is created, T is substituted by String

When MyCustomList<Integer> list2 is created, T is substituted by Integer

Exercise Set - 18

�. Write a method get inside the generic class MyCustomList , which returns the element at a particular index
(passed as argument) in its list storage.

com.in28minutes.generics

com.in28minutes.generics
com.in28minutes.generics.

Solution

MyCustomList.java

 package ;

 public class MyCustomList<T> {
 ArrayList<T> list = new ArrayList<>();

 public void addElement(T element) {
 list.add(element);
 }

 public void removeElement(T element) {
 list.remove(element);
 }

 public String toString() {
 return list.toString();
 }

 public T get(int index) {
 return list.get(index);
 }
 }

GenericsRunner.java

 package ;
 import MyCustomList;

 public class GenericsRunner {
 public static void main(String[] args) {
 MyCustomList<String> list = new MyCustomList<>();
 list.addElement("Element-1");
 list.addElement("Element-2");
 String text = list.get(0);
 System.out.println(text);

 MyCustomList<Integer> list2 = new MyCustomList<>();
 list2.addElement(Integer.valueOf(5));
 list2.addElement(Integer.valueOf(9));
 Integer num = list2.get(1);
 System.out.println(num);
 }
 }

Console Output

Element-1

9

Solution Explained

We have defined a method MyCustomList<T>.get whose return type is generic as well. The return type has the

same placeholder T as the template in the definition of MyCustomList<T> .

For MyCustomList<String> list , list.get returns a String

For MyCustomList<Integer> list2 , list2.get returns an Integer

Implementing Type Restrictions on Generics

com.in28minutes.generics

com.in28minutes.generics
com.in28minutes.generics.

We saw above that we could use MyCustomList<T> to be instantiated into data structures for storing String s as
well as for Integer s.

What if we wanted to to use MyCustomList<T> purely for storing numeric values?

Snippet-3 : Generic Type Restrictions

MyCustomList.java

 package ;

 public class MyCustomList<T extends Number> {
 ArrayList<T> list = new ArrayList<>();

 public void addElement(T element) {
 list.add(element);
 }

 public void removeElement(T element) {
 list.remove(element);
 }

 public String toString() {
 return list.toString();
 }

 public T get(int index) {
 return list.get(index);
 }
 }

GenericsRunner.java

 package ;
 import MyCustomList;

 public class GenericsRunner {
 public static void main(String[] args) {
 //MyCustomList<String> list = new MyCustomList<>();
 MyCustomList<Long> list1 = new MyCustomList<>();
 list1.addElement(5l);
 list1.addElement(7l);
 Long long = list1.get(0);
 System.out.println(long);

 MyCustomList<Integer> list2 = new MyCustomList<>();
 list2.addElement(Integer.valueOf(5));
 list2.addElement(Integer.valueOf(9));
 Integer num = list2.get(1);
 System.out.println(num);
 }
 }

Console Output

5

9

When we specify T extends Number as the type, we can use all the methods in the API of class Number are

available for use.

com.in28minutes.generics

com.in28minutes.generics
com.in28minutes.generics.

Generic Methods

We can create generic methods as well. Let's look at a few examples:

Snippet-4 : Generic Method

GenericsRunner.java

 package ;
 import MyCustomList;

 public class GenericsRunner {
 static <X> X doSomething(X value) {
 return value;
 }

 static <X extends List> void duplicate(X list) {
 list.add(list);
 }

 public static void main(String[] args) {
 String text = doSomething("Hello");
 Integer value = doSomething(Integer.valueOf(7));
 ArrayList<String> list = doSomething(new ArrayList<String>(List.of("A", "B", C")));
 duplicate(list);
 System.out.println(list);
 LinkedList<Integer> list2 = doSomething(new LinkedList<String>(List.of(1, 2, 3)));
 duplicate(list2);
 System.out.println(list2);
 }
 }

Console Output

[A, B, C, A, B, C]

[1, 2, 3, 1, 2, 3]

Generics And Wild-Cards

You can use wild card with generics too - ? extends Number

Snippet-5

GenericsRunner.java

 package ;
 import MyCustomList;

 public class GenericsRunner {
 static double sumOfNumberList(List<? extends Number> numbers) {
 double sum = 0.0;
 for(Number number:numbers) {
 sum += number;
 }
 return sum;
 }

 public static void main(String[] args) {
 System.out.println(sumOfNumberList(List.of(1, 2, 3, 4, 5)));
 System.out.println(sumOfNumberList(List.of(1.1, 2.1, 3.1, 4.1, 5.1)));
 System.out.println(sumOfNumberList(List.of(1l, 2l, 3l, 4l, 5l)));

com.in28minutes.generics
com.in28minutes.generics.

com.in28minutes.generics
com.in28minutes.generics.

 }
 }

Console Output

15.0

15.5

15.0

Snippet-5 Explained

The symbol ? in the definition of the method static double sumOfNumberList(List<? extends Number>
numbers) is the wild-card symbol. It denotes the fact that in order to be a valid argument to sumOfNumberList ,
numbers can be a List of any elements, so long as all of them are of type sub-classed from Number .

This includes Integer , Long , Short , Byte , Float and Double .

It also includes their primitive type counterparts, since they can be converted implicitly to their Wrapper class

counterparts.

Of course, all these elements of List numbers need to be of a homogeneous type.

Restricted Heterogeneous Lists

The generic wildcard we saw in the previous section is referred to as a Upper-Bounded Wild-Card. It can be used

to specify homogeneous types with a restriction. There is another category of wild-cards called Lower-Bounded

Wild-Card, which can be used with create Heterogeneous types of elements , within the restriction. Here is an

example.

Snippet-6 : More wild-cards

GenericsRunner.java

 package ;
 import MyCustomList;

 public class GenericsRunner {
 static void addAFewNumbers(List<? super Number> numbers) {
 numbers.add(1);
 numbers.add(1l);
 numbers.add(1.0);
 numbers.add(1.0l);
 }

 public static void main(String[] args) {
 List<Number> numberList = new ArrayList<>();
 addAFewNumbers(numberList);
 System.out.println(numberList);
 }
 }

Console Output

[1, 1, 1.0. 1.0]

Introduction to Functional Programming

What's all the fuss around Functional Programming about?

Let's find out.

com.in28minutes.generics
com.in28minutes.generics.

Functional Programming Videos

Part 1 - https://www.youtube.com/watch?v=aFCNPHfvqEU

Part 2 - https://www.youtube.com/watch?v=5Xw1_IREXQs

Step 01: Introducing Functional Programming

Let's look at a typical program to loop around a list and print its content.

Snippet-01 : OOP List Traversal

FunctionalProgrammingRunner.java

 package ;
 import List;

 public class FunctionalProgrammingRunner {
 public static void main(String[] args) {
 List<String> list = List.of("Apple", "Banana", "Cat", "Dog");
 for(String str:list) {
 System.out.println(str);
 }
 }
 }

Console Output

Apple

Banana

Cat

Dog

Snippet-01 Explained

Above approach focuses on the how.

We looped around the list, accessed individual elements of a List and did System.out.println() to print each

element.

Functional Programming allows us to focus on the what.

Snippet-02 : printBasic() And printFunctional()

FunctionalProgrammingRunner.java

 package ;
 import List;

 public class FunctionalProgrammingRunner {
 public static void main(String[] args) {
 List<String> list = List.of("Apple", "Banana", "Cat", "Dog");
 //printBasic(list);
 printFunctional(list);
 }

 public static void printBasic(List<String> list) {
 for(String str:list) {
 System.out.println(str);

com.in28minutes.functionalprogramming
java.util.

com.in28minutes.functionalprogramming
java.util.

https://www.youtube.com/watch?v=aFCNPHfvqEU
https://www.youtube.com/watch?v=5Xw1_IREXQs

 }
 }

 public static void printFunctional(List<String> list) {
 list.stream().forEach(
 element -> System.out.println(element)
);
 }
 }

Console Output

Apple

_Banana_Cat_

Dog

Snippet-02 Explained

list.stream().forEach(element -> System.out.println(element)) - for each element in list stream, print it.

element -> System.out.println(element) is called a lambda expression.

Step 02: Looping Through A List

In the previous step , we use this snippet of code - list.stream().forEach(element ->
System.out.println(element))

We are "Passing a function as a method argument".

Let's use JShell to explore this further.

Let's try to print a list of numbers.

Snippet-01 : Loop Using FP

 jshell> List<Integer> list = List.of(1, 4, 7, 9);
 list ==> [1, 4, 7, 9]
 jshell> list.stream().forEach(elem -> System.out.println(elem));
 1
 4
 7
 9
 jshell>

Snippet-01 Explained

elem -> System.out.println(elem) is a lambda expression. For each element in list stream, execute the lambda

expression.

Step 03: Filtering Results

A Stream is a sequence of values. The filter() method can be used to filter the Stream elements based on

some logic.

Snippet-01 : Using filter()

printBasicWithFiltering shows the usual approach of filtering. printFPWithFiltering shows the functional

approach.

 package ;
 import List;

 public class FunctionalProgrammingRunner {
 public static void main(String[] args) {
 List<String> list = List.of("Apple", "Bat", "Cat", "Dog");
 //printBasicWithFiltering(list);
 printFPWithFiltering(list);
 }

 public static void printBasicWithFiltering(List<String> list) {
 for(String str:list) {
 if(str.endsWith("at")) {
 System.out.println(str);
 }
 }
 }

 public static void printFPWithFiltering(List<String> list) {
 list.stream()
 .filter(elem -> elem.endsWith("at"))
 .forEach(element -> System.out.println(element));

 }
 }

Console Output

Bat

Cat

Snippet-02 : Printing even/odd numbers

Let's look at how to filter numbers.

 jshell> List<Integer> list = List.of(1, 4, 7, 9);
 list ==> [1, 4, 7, 9]
 jshell> list.stream().forEach(elem -> System.out.println(elem));
 1
 4
 7
 9
 jshell> list.stream().filter(num -> num%2 == 1).forEach(elem -> System.out.println(elem));
 1
 7
 9
 jshell> list.stream().filter(num -> num%2 == 0).forEach(elem -> System.out.println(elem));
 4
 jshell>

Snippet-02 Explained

Typically, these are the conditions we write

num is odd : if(num % 2 == 1) { /* */ }

num is even : if(num % 2 == 0){ /* */ }

In the above example, we are using lambda expression to define the same conditions.

num is odd: num -> num%2 == 1

com.in28minutes.functionalprogramming
java.util.

num is even: num -> num%2 == 0

Step 05: Streams - Aggregated Results

Sometimes we want to aggregate data into a single result. For example, we might want to add all the numbers

between 1 and 10 . Or we may want to calculate the average maximum temperature in our city over a month's

time.

Snippet-01 : Sum Of A Sequence

Let's look at how to use reduce method to calculation the sum. FPNumberRunner.java

 package ;
 import List;

 public class FPNumberRunner {
 public static void main(String[] args) {
 List<Integer> numbers = List.of(4, 6, 8, 13, 3, 15);
 //System.out.println(printBasicSum(numbers));
 int sum = numbers.stream()
 .reduce(
 0,
 (num1, num2) -> num1 + num2
);
 System.out.println(sum);
 }

 void printBasicSum(List<Integer> numbers) {
 int sum=0;
 for(int num:numbers) {
 sum += num;
 }
 System.out.println(sum);
 }
 }

Console Output

49

Snippet-01 Explained

The reduce() method acts on a pair of elements at a time. The initial-value is 0 . The lambda expression (num1,
num2) -> num1 + num2 is executed on the elements of the list, a pair at a time.

Classroom Exercise CE-01

�. Given the list (4, 6, 8, 13, 3, 15) , compute:
The sum of even numbers in the list.

The sum of odd numbers in the list.

Solution To CE-01

FPNumberRunner.java

 package ;
 import List;

 public class FPNumberRunner {
 public static void main(String[] args) {

com.in28minutes.functionalprogramming
java.util.

com.in28minutes.functionalprogramming
java.util.

 List<Integer> numbers = List.of(4, 6, 8, 13, 3, 15);
 printFPEvenSum(numbers);
 printFPOddSum(numbers);
 }

 void printFPEvenSum(List<Integer> numbers) {
 int sum = numbers.stream()
 .filter(elem -> elem %2 == 0)
 .reduce(0, (num1, num2) -> num1 + num2);
 System.out.println("Even Numbers Sum: " + sum);
 }

 void printFPOddSum(List<Integer> numbers) {
 int sum = numbers.stream()
 .filter(elem -> elem %2 == 1)
 .reduce(0, (num1, num2) -> num1 + num2);
 System.out.println("Odd Numbers Sum: " + sum);
 }
 }

Console Output

Even Numbers Sum: 18

Odd Numbers Sum: 31

Step 06: Functional Programming v Structured Programming

Let's have a re-look at the FPNumberRunner.java program from the previous step. We wrote two variants of the

same task that computed the sum of a list of numbers:

basicSum() : that used the traditional approach

```fpSum()``: which followed the FP scheme of things

Let's use them as benchmarks, to illustrate the core differences between SP and FP.

�. Structured Programming (SP)

    public int basicSum(List<Integer> numbers) {
        int sum=0; 
        for(int num:numbers) { 
            sum += num; 
        } 
        return sum; 
    } 

�. Functional Programming (FP)

    public int  fpSum(List<Integer> numbers) { 
        int sum = numbers.stream() 
                         .reduce(0, (num1, num2) -> num1 + num2); 
        return sum; 
    } 

How are these different?

Mutations (changes to program data):

i. SP: Within basicSum() , the variable sum  (a sort of worker variable) is initialized to 0 , and undergoes
mutations across iterations of the for  loop.



ii. FP: We just set up an initial value for reduce()  to work with. We don't have any mutation.

The what and how of computation:

i. SP: We specify both what to do, and how to do it. The code loops through the list elements using a for ,
while also updating the aggregate value in sum .

ii. FP: We are focused on what to do, and very little on the how part. reduce()  takes care of what numbers

from the stream to add up, and you don't bother about how to select them from the stream.

Step 07: Some FP Terminology

Let's look at some FP terminology a little more formally.

Lambda Expression

    (num1, num2) -> num1 + num2 

is equivalent of this method

    int basicSum(int num1, int num2) {     
        return num1 + num2; 
    } 

A lambda expression can have multiple lines of Java code as well:

    (num1, num2) -> { 
        System.out.println(num1 + " " + num2); 
        return num1 + num2; 
    } 

Why take our word for all this? Let's put this code into an IDE, and then run it, to see for ourselves.

Snippet-01 : Lambda Expression

FPNumberRunner.java

    package ; 
    import List; 

    public class FPNumberRunner { 
        public static void main(String[] args) {
            List<Integer> numbers = List.of(4, 6, 8, 13, 3, 15);
            System.out.println(numbers); 
            printFPSum(numbers);
        } 

        void printFPSum(List<Integer> numbers) {
            int sum = numbers.stream() 
                             .reduce(0, 
                                     (num1, num2) -> { 
                                                        System.out.println(num1 + " " + num2); 
                                                        return num1 + num2; 
                                                     } 
            System.out.println("Even Numbers Sum: " + sum);         
        } 
    } 

com.in28minutes.functionalprogramming
java.util.



Console Output

[4, 6, 8, 13, 3, 15]

0 4

4 6

10 8

18 13

31 3

34 15

49

Stream

A Stream is a sequence of elements. You can perform different kinds of operations on a stream.

Intermediate Operations: An operation that takes a stream - for example, applies a lambda expression - and

produces another stream of elements as its result.

Terminal Operations: A stream operation that takes a stream - for example, applies a lambda expression - and

returns a single result (A single primitive-value/object, or a single collection-of-objects). reduce()  and

forEach()  are a couple of such operations.

Step 08: Intermediate Stream Operations

Output of an intermediate stream operation is another stream.

The most popular intermediate stream operations are:

sorted()

distinct()

filter()

map()

In this step, let's check them out one by one.

Snippet-01 : sorted()  and other operations

    jshell> List<Integer> numbers = List.of(3, 5, 8, 213, 45, 4, 7); 
    numbers ==> [3, 5, 8, 213, 45, 4, 7] 
    jshell> numbers.stream().sorted().forEach(elem -> System.out.println(elem));
    3 
    4 
    5 
    7 
    8 
    45 
    213 
    jshell> List<Integer> numbers = List.of(3, 5, 3, 213, 45, 5, 7); 
    numbers ==> [3, 5, 3, 213, 45, 5, 7] 
    jshell> numbers.stream().distinct().forEach(elem -> System.out.println(elem)); 
    3 
    5 
    213 
    45 
    7 
    jshell> numbers.stream().distinct().sorted().forEach(elem -> System.out.println(elem)); 



Snippet-01 Explained

sorted()  preserves the elements of the consumed stream in the result, but also puts them in natural sorted

order (Increasing order for numbers, alphabetical order for strings).

distinct()  returns a stream retaining only the unique elements of the input stream. This method maintains

the relative order of retained elements.

You can chain together more than one intermediate operation, such as sorted()  followed by distinct()
above. Such code is sometimes called a pipeline.

map()  : Applies a lambda expression to compute new results from the input stream elements. It then returns a

stream of these results as output. In our example, map()  takes each element in the Stream  object created by

```number.stream()``,` to its square value.

Step 09: Programming Exercise FP-PE-01

Exercises

�. Write a program to print the squares of the first 10 positive integers.

�. Create a list of the character strings "Apple", "Banana" and "Cat". Print all of them in lower-case.

�. Create a list of the character strings "Apple", "Banana" and "Cat". Print the length of each string.

Solutions To FP-PE-01

FPNumberRunner.java

 package ;
 public class FPNumberRunner {
 public static void printFPSquares() {
 IntStream.range(1, 11).
 map(num -> num*num).
 forEach(elem -> System.out.println(elem));
 }

 public static void printLowerCases(List<String> list) {
 }

 public static void printLengths(List<String> list) {
 list.stream()
 .map(s -> s.length())
 .forEach(elem -> System.out.println(elem);
 }

 public static void main(String[] args) {
 printFPSquares();
 List<String> list = List.of("Apple", "Banana", "Cat");
 printLowerCases(list);
 printLengths(list);

 3
 5
 7
 45
 213
 jshell> numbers.stream().distinct().map(num -> num*num).forEach(elem -> System.out.println(elem))
 9
 25
 45369
 2025
 49
 jshell>

com.in28minutes.functionalprogramming

 }
 }

Console Output

1

4

9

16

25

36

49

64

81

100

apple

banana

cat

5

6

3

Solution Explained

The map() method accepts a lambda expression.

Step 10: Terminal Operations

A terminal operation returns a single result (A single object/data-unit, or a single collection). It does not return an

output stream.

Commonly used instances of this are:

reduce()

max() and min()

 jshell> IntStream.range(1, 11).reduce(0, (n1, n2) -> n1 + n2);
 $1 ==> 55

max() expects a lambda expression providing a Comparator<T> implementation. Integer.compare(n1,n2) is an

implementation of the Comparator<T> interface for comparing integers.

What if there are no numbers in the Stream? What should be returned? As a Java programmer, we grew up to hate

null . You don't want to return null back.

The Optional type provides an alternative:

You can query an Optional object to check if it contains a valid result, by invoking isPresent() on it.

You can get that result by calling get() on the same object.

 jshell> List.of(23, 12, 34, 53).stream().max();
 | Error:
 | method max() in interface java.util.stream.Stream<T> cannot be applied to types
 | required : java.lang.Comparator<? super java.lang.Integer>
 | found : no argument
 | List.of(23, 12, 34, 53).stream().max();
 |^-----------------------------------^
 jshell> List.of(23, 12, 34, 53).stream().max((n1, n2) -> Integer.compare(n1, n2));
 $2 ==> Optional[53]
 jshell> $2.isPresent()
 $3 ==> true
 jshell> List.of(23, 12, 34, 53).stream().max((n1, n2) -> Integer.compare(n1, n2)).get();
 $4 ==> 53
 jshell>

Step 11: More Stream Operations

Let's now play around with a few more terminal operations, such as min() (terminal operation), and filter()
(intermediate operation).

Snippet-01 : min() and max()

Using min() is similar to max() .

 jshell> List.of(23, 12, 34, 53).stream().max((n1, n2) -> Integer.compare(n1, n2)).get()
 $1 ==> 53
 jshell> List.of(23, 12, 34, 53).stream().min((n1, n2) -> Integer.compare(n1, n2)).get()
 $2 ==> 12
 jshell>

Snippet-02 : Odd and Even Numbers

collect() method can be called to collect the result of filter() into a list. Collectors.toList() is the utility

method used.

Classroom Exercise FP-CE-02

�. From a list of 23, 12, 34, 53, create a list of the even numbers in it.

�. Create a list of squares of the first 10 positive integers.

Solutions To FP-CE-02

FunctionalProgrammingRunner.java

 jshell> List.of(23, 12, 34, 53).stream().filter(e -> e%2==1).forEach(e -> System.out.println(
 23
 53
 jshell> List.of(23, 12, 34, 53).stream().filter(e -> e%2==1).collect(Collectors.toList());
 $1 ==> [23, 53]
 jshell>

given

 package ;

 public class FPNumberRunner {
 public static void main(String[] args) {
 List<Integer> numbers = List.of(23, 12, 34, 53);
 List<Integer> evens = numbers.stream()
 .filter(n -> n%2==0)
 .collect(Collectors.toList());

 List<Integer> tenSquares = IntStream.range(1, 11)
 .map(n -> n*n)
 .boxed()
 .collect(Collectors.toList());
 }
 }

Solution Explained

Solution to #1 is straightforward, given that we already know how to use filter() .

Solution #2 uses boxed() method to convert an IntPipeline to a Stream . After that, what follows is routine
stuff.

Step 12: The Optional<T> class

In an earlier section, we wrote and ran the following code:

 jshell> List.of(23, 12, 34, 53).stream().max((n1, n2) -> Integer.compare(n1, n2));
 Optional[53]
 jshell>

In order to get the result in a form you would appreciate, we modified this code to look like:

jshell> List.of(23, 12, 34, 53).stream().max((n1, n2) -> Integer.compare(n1, n2)).get();
53
jshell>

max() is a stream operation, that needs to consume a stream. It is possible that the input stream is empty. In that

case, the maximum value would be null . It is undesirable in FP to encounter an exception during a stream

operation. It is extremely inelegant if we are asked to handle an exception in an FP code pipeline.

The Optional<T> class was introduced in Java SE 8, as a lifeline in such situations. It covers the possibility of

absence of (or null) result from a terminal stream operation. The following example illustrates how you can query,

and access the result from, an Optional<T> object.

In case the result is empty, then the value stored in the result is not null , it is Optional.empty .

 jshell> List.of(23, 45, 67, 12).stream().filter(num -> num % 2 == 0).max((n1, n2) -> Integer
 $1 ==> Optional[12]
 jshell> $1.get()
 $2 ==> 12
 jshell> $1.isPresent()
 $3 ==> true

com.in28minutes.functionalprogramming

You can provide a default value for the result using the method orElse() .

Step 13: Functional Interfaces : Predicate

When we define a lambda expression , a lot of things happen behind the scenes.

An important concept is a functional interface.

Let's explain this term using an example.

The following code takes a behind-the-scenes look at filter() .

Snippet-01: Lambda behind-the-scenes - v1

LambdaBehindTheScenesRunner.java

 package ;
 import List;

 public class LambdaBehindTheScenesRunner {
 public static void main(String[] args) {
 List.of(23, 43, 34, 45).stream()
 .filter(num -> num%2 == 0)
 .forEach(e -> System.out.println(e));
 }
 }

Console Output

34

36

48

Snippet-01 Explained

The signature of filter() reads is Stream<T> java.util.stream.Stream.filter(Predicate<? super T>
predicate) . In this case, T is java.lang.Integer .

filter() accepts an object implementing the Predicate interface, as its argument. It returns a stream,

consisting of those elements from the input stream, that match this predicate.

Conventionally speaking, a predicate is a logical condition. This predicate is applied to each element, to determine if

it should be included in the output stream.

 jshell> List.of(23, 45, 67).stream().filter(num -> num % 2 == 0).max((n1, n2) -> Integer.com
 $4 ==> Optional.empty
 jshell> $4.isPresent()
 $5 ==> false
 jshell> $4.orElse(0)
 $6 ==> 0

 jshell> List.of(23, 45, 67).stream().filter(num -> num % 2 == 0).max((n1, n2) -> Integer.com
 $7 ==> 0
 jshell> List.of(23, 45, 67, 34).stream().filter(num -> num % 2 == 0).max((n1, n2) -> Integer
 $8 ==> 34
 jshell>

com.in28minutes.functionalprogramming
java.util.

The Predicate<T> interface is an example of a Functional Interface. This interface has one method boolean
test(T t) .

Instead of num -> num%2 == 0 , let's implement a EvenNumberPredicate .

 @FunctionalInterface
 public interface Predicate<? super T> {
 boolean test(T t) { /* */ }
 //...
 }
 }

Snippet-02: lambda behind the scenes - v2

LambdaBehindTheScenesRunner.java

 package ;
 import List;
 import Predicate;

 class EvenNumberPredicate implements Predicate<Integer> {
 @Override
 public boolean test(Integer number) {
 return (number%2 == 0);
 }
 }

 public class LambdaBehindTheScenesRunner {
 public static void main(String[] args) {
 List.of(23, 43, 34, 45, 36, 48).stream()
 .filter(new EvenNumberPredicate())
 .forEach(e -> System.out.println(e));
 }
 }

Console Output

34

36

48

Snippet-02 Explained

EvenNumberPredicate implements the Predicate<Integer> interface, and overrides the test() method.

Something similar to EvenNumberPredicate is created when we use lambda expressions num -> num%2 == 0 .

Step 14: Functional Interfaces : Consumer

Let's look at another Functional Interface - Consumer<S> .

forEach() on a stream is actually defined as - forEach(Consumer<? super S> action)

The Consumer<S> interface has the following definition:

 @FunctionalInterface
 public interface Consumer<? super S> {

com.in28minutes.functionalprogramming
java.util.
java.util.function.

 void accept(S s) { /* */ }

 //...

 }

The lambda expression used inside forEach() and other such stream operations, actually represent a Consumer
implementation.

Snippet-01

Let's implement a SysOutConsumer .

FunctionalProgrammingRunner.java

 package ;
 import List;
 import Stream;
 import Consumer;
 import Predicate;

 class EvenNumberPredicate implements Predicate<Integer> {
 @Override
 public boolean test(Integer num) {
 return num%2 == 0;
 }
 }

 class SysOutConsumer implements Consumer<Integer> {
 @Override
 public void accept(Integer num) {
 System.out.println(num);
 }
 }

 public class FPNumberRunner {
 public static void main(String[] args) {
 List<Integer> numbers = List.of(23, 12, 34, 45, 36, 48);
 //List<Integer> evens = numbers.stream()
 .filter(n -> n%2==0)
 .collect(Collectors.toList());

 List<Integer> evensToo = numbers.stream()
 .filter(new EvenNumberPredicate())
 .collect(Collectors.toList());

 numbers.stream()
 .filter(new EvenNumberPredicate())
 .forEach(new SysOutConsumer());
 }
 }

Console Output

12

34

36

48

Snippet-01 Explained

com.in28minutes.functionalprogramming
java.util.
java.util.stream.
java.util.function.
java.util.function.

The code actually speaks for itself. The steps to customize a Consumer<S> implementation are quote simple,

and straightforward.

The final code that involves both a custom Predicate<T> , and a custom Consumer<S> is still quite compact

and elegant!

Step 15: More Functional Interfaces

Let's now look at what happens behind the scenes, for the stream operation map() . Suppose we wanted to print
out the squares of all even numbers in a given list.

Snippet-01 : map() Behind The Scenes - v1

 package ;
 import List;
 import Stream;
 import Consumer;
 import Predicate;

 class EvenNumberPredicate implements Predicate<Integer> {
 @Override
 public boolean test(Integer num) {
 return num%2 == 0;
 }
 }

 class SysOutConsumer implements Consumer<Integer> {
 @Override
 public void accept(Integer num) {
 System.out.println(num);
 }
 }

 public class FPNumberRunner {
 public static void main(String[] args) {
 List<Integer> numbers = List.of(23, 12, 34, 45, 36, 48);
 numbers.stream()
 .filter(new EvenNumberPredicate())
 .map(n -> n*n)
 .forEach(new SysOutPredicate());
 }
 }

Console Output

1156

1296

2304

Snippet-01 Explained

The signature of the map() intermediate stream operation is :

 <R> Stream<R> map(Function<?super T, ? extends R> mapper){}

Function is shown below.

 @FunctionalInterface

com.in28minutes.functionalprogramming
java.util.
java.util.stream.
java.util.function.
java.util.function.

 public interface Function<T,R> {
 R apply(T t);
 }

The method apply() accepts a T object as argument, and returns another object of type R . In effect, any
Function implementation can map object of one type to another.

Snippet-02 : map() Behind The Scenes - v2

Let's implement a NumberSquareMapper .

 package ;
 import List;
 import Stream;
 import Consumer;
 import Predicate;
 import Function;

 class EvenNumberPredicate implements Predicate<Integer> {
 @Override
 public boolean test(Integer num) {
 return num%2 == 0;
 }
 }

 class SysOutConsumer implements Consumer<Integer> {
 @Override
 public void accept(Integer num) {
 System.out.println(num);
 }
 }

 class NumberSquareMapper implements Function<Integer, Integer> {
 @Override
 public Integer apply(Integer number) {
 return number * number;
 }
 }

 public class FPNumberRunner {
 public static void main(String[] args) {
 List<Integer> numbers = List.of(23, 12, 34, 45, 36, 48);
 numbers.stream()
 .filter(num -> num%2 == 0)
 .map(n -> n*n)
 .forEach(e -> System.out.println(e));

 numbers.stream()
 .filter(new EvenNumberPredicate())
 .map(new NumberSquareMapper())
 .forEach(new SysOutPredicate());
 }
 }

Console Output

1156

1296

2304

1156

com.in28minutes.functionalprogramming
java.util.
java.util.stream.
java.util.function.
java.util.function.
java.util.function.

1296

2304

Step 16: Introducing Method References

What is a method reference?

Let's look at an example.

Snippet-01: Method References - v1

MethodReferencesRunner.java

 package ;
 import List;

 public class MethodReferencesRunner {
 public static void main(String[] args)
 List.of("Ant", "Bat", "Cat", "Dog", "Elephant").stream()
 .map(s -> s.length())
 .forEach(l -> System.out.println(l));
 }
 }

Console Output

3

3

3

3

8

Snippet-02 : Method References - v2

Method references make it easy to create lambda expressions.

l -> System.out.println(l) can be replaced with System.out::println .

MethodReferencesRunner.java

 package ;
 import List;

 public class MethodReferencesRunner {
 public static void main(String[] args) {
 List.of("Ant", "Bat", "Cat", "Dog", "Elephant").stream()
 .map(s -> s.length())
 .forEach(l -> System.out.println(l));

 List.of("Ant", "Bat", "Cat", "Dog", "Elephant").stream()
 .map(s -> s.length())
 .forEach(System.out::println);
 }
 }

Snippet-03: Method References - v3

com.in28minutes.functionalprogramming
java.util.

com.in28minutes.functionalprogramming
java.util.

Let's define a static method print and use it using a method reference.

MethodReferencesRunner::print is same as l -> MethodReferencesRunner.print(l)

MethodReferencesRunner.java

Snippet-04 : Method References - v4

Instance method calls can also be replaced with their method references.

On a String , String::length is the same as s -> s.length() .

MethodReferencesRunner.java

Classroom Exercise FP-CE-03

�. Using method references, write java functional code to determine the maximum even number, in a given list of

integers.

Solution To FP-CE-03

MethodReferencesRunner.java

 package ;
 import List;

 public class MethodReferencesRunner {
 public static void print(Integer number) {
 System.out.println(number);
 }

 public static void main(String[] args) {
 List.of("Ant", "Bat", "Cat", "Dog", "Elephant").stream()
 .map(s -> s.length())
 .forEach(l -> MethodReferencesRunner.print

 List.of("Ant", "Bat", "Cat", "Dog", "Elephant").stream()
 .map(s -> s.length())
 .forEach(MethodReferencesRunner::print);
 }
 }

 package ;
 import List;

 public class MethodReferencesRunner {
 public static void print(Integer number) {
 System.out.println(number);
 }

 public static void main(String[] args) {
 List.of("Ant", "Bat", "Cat", "Dog", "Elephant").stream()
 .map(s -> s.length())
 .forEach(MethodReferencesRunner::print);

 List.of("Ant", "Bat", "Cat", "Dog", "Elephant").stream()
 .map(String::length)
 .forEach(MethodReferencesRunner::print);
 }
 }

com.in28minutes.functionalprogramming
java.util.

com.in28minutes.functionalprogramming
java.util.

 package ;
 import List;

 public class MethodReferencesRunner {
 public static void print(Integer number) {
 System.out.println(number);
 }

 public static void main(String[] args) {
 int max = List.of(23, 45, 67, 34).stream()
 .filter(num -> num % 2 == 0)
 .max((n1, n2) -> Integer.compare(n1, n2))
 .orElse(0);

 System.out.println(max);
 int maximum = List.of(23, 45, 67, 34).stream()
 .filter(MethodReferencesRunner::isEven)
 .max(Integer::compare)
 .orElse(0);

 System.out.println(maximum);
 }

 public static booelan isEven(Integer number) {
 return (number %2 == 0);
 }
 }

Console Output

34

34

Summary

In this step, we:

Understood what is a method reference

Learned that both built-in, and user defined class methods can be invoked using method references

Observed that method references work for static and non-static methods

Step 17: FP - Functions As First-Class Citizens

Are functions first class citizens in Java?

Here are few questions to think about?

Can you pass a function as an argument to a method?

Can you assign a function to a variable?

Can you obtain a function as a return value, from a method invocation?

Passing function as method argument

We looked at several examples of this earlier.

In the example below, num -> num % 2 == 0 is passed to filter method.

int max = List.of(23, 45, 67, 34).stream()
 .filter(num -> num % 2 == 0)

com.in28minutes.functionalprogramming
java.util.

 .max((n1, n2) -> Integer.compare(n1, n2))
 .orElse(0);

Storing functions in reference variables

evenPredicate and oddPredicate represent functions.

 package ;
 import List;
 import Predicate;

 public class FPNumberRunner {
 public static void main(String[] args) {
 List<Integer> numbers = List.of(23, 12, 34, 45, 36, 48);
 Predicate<? super Integer> evenPredicate = num -> num % 2 == 0;
 Predicate<? super Integer> oddPredicate = num -> num % 2 == 1;

 numbers.stream()
 .filter(evenPredicate)
 .map(n -> n*n)
 .forEach(e -> System.out.println(e));
 }
 }

Console Output

1156

1296

2304

Returning functions from methods

createEvenPredicate and createOddPredicate are examples of methods returning functions.

 import Stream;
 import Predicate;

 public class FPNumberRunner {
 public static Predicate<? super Integer> createEvenPredicate() {
 return num -> num%2 == 0;
 }

 public static Predicate<? super Integer> createOddPredicate() {
 return num -> num%2 == 1;
 }

 public static void main(String[] args) {
 List<Integer> numbers = List.of(23, 12, 34, 45, 36, 48);
 //Predicate<? super Integer> evenPredicate = num -> num % 2 == 0;
 //Predicate<? super Integer> evenPredicate = createEvenPredicate();

 numbers.stream()
 //.filter(num -> num%2 == 0)
 //.filter(evenPredicate)
 .map(n -> n*n)
 .forEach(e -> System.out.println(e));
 }
 }

com.in28minutes.functionalprogramming
java.util.
java.util.function.

java.util.stream.
java.util.function.

Console Output

1156

1296

2304

Summary

In this step, we observed that the following is true for a function:

It can be passed as a method argument

It can be stored in a reference variable

It can be returned from a method

Threads and Concurrency

So far, we've only seen programs that run like a single horse, running round a race course.

However, it often makes sense for a program's main task to be split into smaller ones (let's call them sub-tasks).

Imagine an ant-colony, where a large number of worker ants toil together, to complete what the Queen Ant tells

them to do. Groups of ants that are part of separately tasks, work with a free hand.

The concept of concurrency in programming is very similar to what an ant colony is in nature.

Step 01: Concurrent Tasks: Extending Thread

In Java, you can run tasks in parallel using threads. Let's first write a simple program.

Snippet-1

ThreadBasicsRunner.java

 public class ThreadBasicsRunner {
 public static void main(String[] args) {
 //Task1
 for(int i=101; i<=199; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\n Task1 Done");

 //Task2
 for(int i=201; i<=299; i++) {
 System.out.print(i + " ");
 }

 System.out.println("\n Task2 Done");
 //Task3
 for(int i=301; i<=399; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\n Task3 Done");

 System.out.println("Main Done");
 }
 }

Console Output

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

Task1 Done

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

Task2 Done

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

Task3 Done

Main Done

Snippet-1 Explained

As you can see, the execution of all three for loops (that really are independent tasks) is sequential. This is how all

our code so far has been running!

Thread Creation

There are two ways in which you can create a thread to represent a sub-task, within a program. They are:

Define your own thread class to sub-class the Thread class .

Define your own thread class to implement the Runnable interface .

In this step, we will focus on the first alternative.

Snippet-01 : A simple Java thread class

ThreadBasicsRunner.java

 class Task1 extends Thread {
 public void run() {
 System.out.println("Task1 Started ");
 for(int i=101; i<=199; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask1 Done");
 }
 }

 public class ThreadBasicsRunner {
 public static void main(String[] args) {
 //Task1
 Task1 task1 = new Task1();
 task1.start();

 //Task2
 for(int i=201; i<=299; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask2 Done");

 //Task3
 for(int i=301; i<=399; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask3 Done");
 System.out.println("\nMain Done");
 }
 }

Console Output

Snippet-01 Explained

We defined a Task1 class to denote our sub-task, with a run() method definition. However, when we create

such a thread within our main() method, we don't seem to be invoking run() in any way! What's happening here?

A thread can be created and launched, by calling a generic method named start() . method. Calling start() will

invoke the individual thread s̓ run() method.

From the console output, we see that the output of Task1 overlaps with those of tasks labeled Task2 and Task3.

Task1 is running in parallel with main which is running (Task2, Task3).

Summary

In this step, we:

Discovered how to define a thread by sub-classing Thread

Demonstrated how to run a Thread

Step 02: Concurrent Tasks - Implementing Runnable

Snippet-01 : Implementing Runnable

In Step 01, we told you that there are two ways a thread could represent a sub-task, in a Java program. One was by

sub-classing a Thread , and the other way is to implement Runnable . We saw the first way a short while ago, and

it's time now to explore the second. The following example will show you how it's done.

ThreadBasicsRunner.java

 class Task1 extends Thread {
 public void run() {
 System.out.println("Task1 Started ");
 for(int i=101; i<=199; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask1 Done");
 }
 }

Task1 Started
201 101 202 102 203 103 204 104 105 205 206 106 207 107 208 108 209 109 210 110 211 111 212 112 213 1
Task2 Done
301 199 302
Task1 Done
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 3
Task3 Done

Main Done

 class Task2 implements Runnable {
 @Override
 public void run() {
 System.out.println("Task2 Started ");
 for(int i=201; i<=299; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask2 Done");
 }
 }

 public class ThreadBasicsRunner {
 public static void main(String[] args) {
 System.out.print("\nTask1 Kicked Off\n");
 Task1 task1 = new Task1();
 task1.start();

 System.out.print("\nTask2 Kicked Off\n");
 Task2 task2 = new Task2();
 Thread task2Thread = new Thread(task2);
 task2Thread.start();

 System.out.print("\nTask3 Kicked Off\n");
 for(int i=301; i<=399; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask3 Done");

 System.out.println("\nMain Done");
 }
 }

Console Output

Snippet-01 Explained

In this example, we implemented Runnable by implementing the run() method from Runnable interface.

To run Task2 which is implementing Runnable interface, we used this code. We are using the Thread constructor

passing an instance of Task2 .

Task2 task2 = new Task2();
Thread task2Thread = new Thread(task2);
task2Thread.start();

You can see from the output that all three tasks are running in parallel.

Task1 Kicked Off
Task1 Started
101 102 103 104 105 106 107 108 109 110 111
Task2 Kicked Off
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 1
Task1 Done

Task3 Kicked Off
Task2 Started
201 202 203 204 205 206 207 208 209 210 211 212 213 301 214 215 216 217 218 302 219 220 221 222 223 2
Task2 Done
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 3
Task3 Done

Main Done

Summary

In this step, we:

Explored another way to create threads, by implementing the Runnable interface

Learned to run a thread created using Runnable interface

Step 03: The Thread Life-cycle

A Java Thread goes through a sequence of states during its lifetime. The term life-cycle is used to describe this

fact, and clearly defines what specific state a thread could be in, at various points of time.

Let's consider the following example we explored recently, in Step 02:

 class Task1 extends Thread {
 public void run() {
 for(int i=101; i<=199; i++) {
 System.out.print(i + " ");
 }
 }
 }

 class Task2 implements Runnable {
 @Override
 public void run() {
 for(int i=201; i<=299; i++) {
 System.out.print(i + " ");
 }
 }
 }

 public class ThreadBasicsRunner {
 public static void main(String[] args) {
 Task1 task1 = new Task1();
 task1.start();
 Task2 task2 = new Task2();
 Thread task2Thread = new Thread(task2);
 task2Thread.start();
 for(int i=301; i<=399; i++) {
 System.out.print(i + " ");
 }
 }
 }

Different states of a thread are:

NEW: A thread is in this state as soon as it's been created, but its start() method hasn't yet been invoked.

For Task1 : After the execution of Task1 task1 = new Task1();

For Task2 : After the execution of Task2 task2 = new Task2(); task2Thread = new Thread(task2);

TERMINATED/DEAD: When all the statements inside a thread's run() method have been been completed,

that thread is said to have terminated.

A thread can be in any one of the remaining three states, after its start() method has been invoked.

RUNNING: If the thread is currently running.

RUNNABLE: If the thread is not currently running, but is ready to do so at any time.

BLOCKED/WAITING: If the thread is not currently running on the processor, but is not ready to execute either.

This may be the case if it's waiting for an external resource (such as a user's input) or another thread.

Summary

In this step, we:

Discussed different states of a Thread with an example

Step 04: Thread Priorities

Java allows you to request the thread scheduler, to change the priority of a thread. The priority of any thread always

lies in a fixed range - MIN_PRIORITY = 1 to MAX_PRIORITY = 10 . The default priority that's assigned to any thread,
is NORM_PRIORITY = 5 .

A request to change this priority is done by invoking the static setPriority(int) method, available in the Thread
class . This request may or may not be honored in response, so be prepared for that!

Step 05: Communicating Threads

Any program where threads are not explicitly created is a single-threaded application. The thread that we refer to

here is the main thread, executing the program's main() method.

Sometimes, threads might depend on one another.

Let consider the example from Step 02. We want to add a condition - Task3 should execute only after Task1

terminates.

ThreadBasicsRunner.java

 class Task1 extends Thread {
 public void run() {
 System.out.println("Task1 Started ");
 for(int i=101; i<=199; i++) {
 System.out.print(i + " ");
 }
 }
 }

 class Task2 implements Runnable {
 @Override
 public void run() {
 System.out.println("Task2 Started ");
 for(int i=201; i<=299; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask2 Done");
 }
 }

 public class ThreadBasicsRunner {
 public static void main(String[] args) {
 System.out.print("\nTask1 Kicked Off\n");
 Task1 task1 = new Task1();
 task1.start();
 System.out.print("\nTask2 Kicked Off\n");
 Task2 task2 = new Task2();
 Thread task2Thread = new Thread(task2);
 task2Thread.start();

 task1.join();

 System.out.print("\nTask3 Kicked Off\n");
 for(int i=301; i<=399; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask3 Done");

 System.out.println("\nMain Done");
 }
 }

Snippet-5 Explained

task1.join() waits until task1 completes. So, the code after task1.join() will executed only on completion of

task1 .

If we want Task3 to be executed only after both Task1 and Task2 are done, the code in main() needs to look as

follows:

Snippet-6 : Task3 after Task1 and Task2

ThreadBasicsRunner.java

 public static void main(String[] args) {
 System.out.print("\nTask1 Kicked Off\n");
 Task1 task1 = new Task1();
 task1.start();

 System.out.print("\nTask2 Kicked Off\n");
 Task2 task2 = new Task2();
 Thread task2Thread = new Thread(task2);
 task2Thread.start();

 task1.join();
 task2Thread.join();

 System.out.print("\nTask3 Kicked Off\n");
 for(int i=301; i<=399; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask3 Done");
 System.out.println("\nMain Done");

 }

Snippet-6 Explained

It is important to note that Task1 and Task2 are still independent sub-tasks. The thread scheduler is free to

interleave their executions. However, Task3 is kicked off only after both of them terminate.

Summary

In this step, we:

Understood the need for thread communication

Learned that Java provides mechanisms for threads to wait for each other

Observed how the join() method can be used to sequence thread execution

Step 07: synchronized Methods, And Thread Utilities

When a thread gets tired, you can put it to bed. Heck, you can do it even when it's fresh and raring to go! It's under

your control, remember?

The Thread class provides a couple of methods:

public static native void sleep(int millis) : Calling this method will cause the thread in question, to go

into a blocked / waiting state for at least millis milliseconds.

public static native void yield() : Request thread scheduler to execute some other thread. The

scheduler is free to ignore such requests.

Snippet-01 : Thread utilities

jshell> Thread.sleep(1000)

jshell> Thread.sleep(10000)

jshell>

Snippet-7 Explained

Thread.sleep(1000) causes the JShell prompt to appear after a delay of at least 1 second. This delay is

even more visible, when we execute Thread.sleep(10000) .

Step 08: Drawbacks of earlier approaches

We saw few of the methods for synchronization in the Thread class

start()

join()

sleep()

wait()

Above approaches have a few drawbacks:

No Fine-Grained Control: Suppose, for instance , we want Task3 to run after any one of Task1 or Task2 is done.

How do we do it?

Difficult to maintain: Imagine managing 5-10 threads with code written in earlier examples. It would become

very difficult to maintain.

NO Sub-Task Return Mechanism: With the Thread class or the Runnable interface , there is no way to
get the result from a sub-task.

Step 09: Introducing ExecutorService

In order to address the serious limitations of the Thread API, a new Executor Service was added in Java SE 5.

The ExecutorService is a framework you can use to manage threads in your code, better. It has built-in ways to:

Create and launch threads more intuitively

Manage thread state and its life-cycle more easily

Synchronize between threads with more control, and

Handle groups of threads neatly

The ExecutorService provides utilities to achieve each one of these. Let's start with thread creation, which the

next example takes care of.

Snippet-01 : Creating a Thread

ExecutorServiceRunner.java

 import ExecutorService;
 import Executors;

 class Task1 extends Thread {
 public void run() {
 System.out.println("Task1 Started ");

java.util.concurrent.
java.util.concurrent.

 for(int i=101; i<=199; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask1 Done");
 }
 }

 class Task2 implements Runnable {
 @Override
 public void run() {
 System.out.println("Task2 Started ");
 for(int i=201; i<=299; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask2 Done");
 }
 }

 public class ExecutorServiceRunner {
 public static void main(String[] args) {
 ExecutorService executorService = Executors.newSingleThreadExecutor();
 executorService.execute(new Task1());
 executorService.execute(new Thread(new Task2()));
 }
 }

Console Output

Task1 Started

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

Task1 Done

Task2 Started

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

Task2 Done

Snippet-01 Explained

ExecutorService executorService = Executors.newSingleThreadExecutor() creates a single threaded executor

service. That's why the tasks ran serially, one after the other.

Snippet-02 : main runs in parallel

Let's update the main method to do more things:

 public class ExecutorServiceRunner {
 public static void main(String[] args) {
 ExecutorService executorService = Executors.newSingleThreadExecutor();
 executorService.execute(new Task1());
 executorService.execute(new Thread(new Task2()));
 System.out.print("\nTask3 Kicked Off\n");

 for(int i=301; i<=399; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask3 Done");
 System.out.println("\nMain Done");
 executorService.shutdown();
 }
 }

Console Output

Snippet-02 Explained

The only order that we see in the resulting chaos is: Task2 starts execution only after Task1 is done.

Threads managed by ExecutorService run in parallel with main method.

Step 10: Executor - Customizing Number Of Threads

With the ExecutorService , it is possible to create a pool of threads.

The following examples will show you how you can create thread pools of varying kinds, and of course, of different

sizes.

Snippet-03 : Executors for Concurrent threads

ExecutorServiceRunner.java

 public class ExecutorServiceRunner {
 public static void main(String[] args) {
 ExecutorService executorService = Executors.newFixedThreadPool(2);
 executorService.execute(new Task1());
 executorService.execute(new Thread(new Task2()));
 System.out.print("\nTask3 Kicked Off\n");

 for(int i=301; i<=399; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask3 Done");
 System.out.println("\nMain Done");
 executorService.shutdown();
 }
 }

Console Output

Task1 Started
101
Task3 Kicked Off
102 301 103 302 104 303 105 304 106 305 107 306 108 109 110 111 112 307 113 114 115 116 117 118 119 1
Task1 Done
337 338 Task2 Started
339 201 202 203 204 205 206 207 340 341 208 209 210 211 212 213 214 215 216 217 218 219 220 342 221 2
Task3 Done

Main Done
292 293 294 295 296 297 298 299
Task2 Done

Snippet-03 Explained

We created ExecutorService by using Executors.newFixedThreadPool(2) . So, 'ExecutorService` uses two
parallel threads at a maximum.

Task1 and Task2 execute concurrently as part of the ExecutorService , and

The thread running main() executes concurrently with this thread pool, created by ExecutorService .

Snippet-04 : All-Executor Task Execution

Let's create a simple example to allow to play with 'ExecutorService'.

ExecutorServiceRunner.java

 import ExecutorService;
 import Executors;

 class Task extends Thread {
 private int number;

 public Task(int number) {
 this.number = number;
 }

 public void run() {
 System.out.println("Task " + number + " Started");
 for(int i=number*100; i<=number*100+99; i++) {
 System.out.print(i + " ");
 }
 System.out.println("\nTask " + number +" Done");
 }
 }

 public class ExecutorServiceRunner {
 public static void main(String[] args) {
 ExecutorService executorService = Executors.newFixedThreadPool(2);
 executorService.execute(new Task(1));
 executorService.execute(new Task(2));
 executorService.execute(new Task(3));
 executorService.shutdown();
 }
 }

Snippet-04 Explained

Executors.newFixedThreadPool(2) - Two threads in parallel. The thread new Task(3) is executed only after any

one of new Task(1) and new Task(2) have completed their execution.

Snippet-04 : Larger Thread Pool Size

Task1 Started

Task3 Kicked Off
301 101 302 303 304 Task2 Started
305 306 102 307 103 201 104 308 105 202 106 309 107 203 108 310 109 110 204 111 311 112 205 113 312 1
Task3 Done

Main Done
184 185 279 280 281 282 283 186 187 284 285 286 188 189 287 288 289 190 191 290 192 291 193 292 194 2
Task2 Done
197 198 199
Task1 Done

java.util.concurrent.
java.util.concurrent.

 public class ExecutorServiceRunner {
 public static void main(String[] args) {
 ExecutorService executorService = Executors.newFixedThreadPool(3);
 executorService.execute(new Task(1));
 executorService.execute(new Task(2));
 executorService.execute(new Task(3));
 executorService.execute(new Task(4));
 executorService.execute(new Task(5));
 executorService.execute(new Task(6));
 executorService.execute(new Task(7));
 executorService.shutdown();
 }
 }

Snippet-04 Explained

We made the pool larger to 3:

Initially Tasks 1 , 2 , 3 are added to the ExecutorService and are started.

As soon as any one of them is terminated, another task from the thread pool is picked up for execution, and so

on. A classic case of musical chairs, with regard to the slots available in the ExecutorService thread pool, is

played out here!

Summary

In this step, we:

Explored how one can create pools of threads of the same kind, using the ExecutorService

Noted how one could specify the size of a thread pool

Step 11: ExecutorService : Returning Values From Tasks

Snippet-01: Returning a Future Object

So far, we have only seen sub-tasks that are largely independent, and which don't return any result to the main

program that launched them.

To be able to return a value from a Thread, Java provides a Callable<T> interface.

The next example tells you how to implement Callable<T> , and use it with ExecutorService .

ExecutorServiceRunner.java

 import ExecutorService;
 import Executors;
 import Callable;

 class CallableTask implements Callable<String> {
 private String name;

 public CallableTask(String name) {
 this.name = name;
 }

 @Override
 public String call() throws Exception {
 Thread.sleep(1000);
 return "Hello " + name;
 }
 }

java.util.concurrent.
java.util.concurrent.
java.util.concurrent.

Console Output

CallableTask in28Minutes Submitted

Hello in28Minutes

Snippet-01 Explained

class CallableTask implements Callable<String> - Implement Callable . Return type is String

public String call() throws Exception { - Implement call method and return a String value back.

executorService.submit(new CallableTask(String)) adds a callable task to its thread pool. This puts the

task thread in a RUNNABLE state. Subsequently, the program goes ahead to invoke its call() method.

welcomeFuture.get() - Ensures that the main thread waits for the result of the operation.

Summary

In this step, we:

Understood the need for a mechanism, to create sub-tasks that return values

Discovered that Java has a Callable<T> interface to do exactly this

Saw that the ExecutorService is capable of managing Callable threads

Step 11: Executors - Waiting For Many Callable Tasks To Complete

ExecutorService framework also allows you to create a pool of Callable threads. Not only that, you can collect

their return values together.

Snippet-01 : Waiting for Multiple Callable Threads

MultipleCallableRunner.java

 import ExecutorService;
 import Executors;
 import Callable;

 class CallableTask implements Callable<String> {
 private String name;

 public CallableTask(String name) {
 this.name = name;
 }

 @Override
 public String call() throws Exception {
 Thread.sleep(1000);
 return "Hello " + name;
 }
 }

 public class CallableRunner {
 public static void main(String[] args) throws InterruptedException, ExecutionException {
 ExecutorService executorService = Executors.newFixedThreadPool(1);
 Future<String> welcomeFuture = executorService.submit(new CallableTask("in28Minutes"));
 System.out.println("CallableTask in28Minutes Submitted");
 String welcomeMessage = welcomeFuture.get();
 System.out.println(welcomeMessage);
 executorService.shutdown();
 }
 }

java.util.concurrent.
java.util.concurrent.
java.util.concurrent.

 public class MultipleCallableRunner {
 public static void main(String[] args) throws InterruptedException, ExecutionException {
 ExecutorService executorService = Executors.newFixedThreadPool(1);
 List<CallableTask> tasks = List.of(new CallableTask("in28Minutes"),
 new CallableTask("Ranga"),
 new CallableTask("Adam"));
 List<Future<String>> welcomeAll = executorService.invokeAll(tasks);
 for(Future<String> welcomeFuture : welcomeAll) {
 System.out.println(welcomeFuture.get());
 }
 executorService.shutdown();
 }
 }

Console Output

Hello in28Minutes

Hello Ranga

Hello Adam

Snippet-01 Explained

The invokeAll() method of ExecutorService allows for a list of Callable tasks to be launched in the thread

pool. Also, a List of Future objects can be used to hold return values, one for each such Callable thread.

The list of return values can be accessed only after all the threads are done, and have returned their results.

This can be verified from the console output. all the planned welcome messages are printed in one go, but only

after a wait of at least 3000 milliseconds has been completed.

Let's now see what scenario would pan out with a larger thread pool size.

Snippet-02 : List of Callable tasks with larger thread pool

 public class MultipleCallableRunner {
 public static void main(String[] args) throws InterruptedException, ExecutionException {
 ExecutorService executorService = Executors.newFixedThreadPool(3);
 List<CallableTask> tasks = List.of(new CallableTask("in28Minutes"),
 new CallableTask("Ranga"),
 new CallableTask("Adam"));
 List<Future<String>> welcomeAll = executorService.invokeAll(tasks);
 for(Future<String> welcomeFuture : welcomeAll) {
 System.out.println(welcomeFuture.get());
 }
 executorService.shutdown();
 }
 }

Console Output

Hello in28Minutes

Hello Ranga

Hello Adam

Snippet-02 Explained

The welcome messages all get printed in a batch again, but their collective wait gets shorter. This is because:

The thread pool size is now 3 , not 2 as earlier. This means all the three tasks can be put in the RUNNABLE

state at once.

Then, they go into their BLOCKED state also almost simultaneously, which means their collective wait time is

much less than 3000 milliseconds. That's one advantage of a larger thread pool!

Summary

In this step, we:

Learned that it's possible to collect the return values of a pool of Callable threads, at one go.

This is done using the invokeAll() method for their launch, and specifying a List of Future objects to

hold these results

Changing the thread pool size for such scenarios can change response time dramatically

Step 12: Executor - Wait Only For The Fastest Task

Let's look at how you can wait for any of the three tasks to complete.

Snippet-01 : Wait only for fastest

 public class MultipleAnyCallableRunner {
 public static void main(String[] args) throws InterruptedException, ExecutionException {
 ExecutorService executorService = Executors.newFixedThreadPool(3);
 List<CallableTask> tasks = List.of(new CallableTask("in28Minutes"),
 new CallableTask("Ranga"),
 new CallableTask("Adam"));
 String welcomeMessage = executorService.invokeAny(tasks);
 System.out.println(welcomeMessage);
 executorService.shutdown();
 }
 }

Console Output

Hello Ranga

Console Output

Hello in28Minutes

Console Output

Hello Ranga

Console Output

Hello Adam

Snippet-01 Explained

The method invokeAny() returns when the first of the sub-tasks is done. Also, the returned value is not a Future
object. It's the return value of the call() method.

We can see that over different executions, the order of console output changes. This is because:

All three tasks are created together, in a thread pool of size 3 .

Therefore, these are independent threads, going into their RUNNABLE states almost at once.

Summary

In this step, we:

Learned that ExecutorService has a way to return the first result, from a poll of Callable threads

Introduction To Exception handling

Recommended Exception handling Videos

https://www.youtube.com/watch?v=34ttwuxHtAE

There are two kinds of errors a programmer faces:

Compile-time Errors: Flagged by the compiler when it detects syntax or semantic errors.

Run-time Errors: Detected by the run-time environment when executing code

Example runtime errors include:

Running out of heap-memory for objects, or space for the method call stack

Dividing a number by 0

Trying to read from an unopened file

Exceptions are unexpected conditions; their occurrence does not make a programmer bad (or good, for that

matter). It is a programmer's responsibility to be aware of potential exceptional conditions in her program, and use a

mechanism to handle them effectively.

Handling an exception generally involves two important aims:

�. Provide a useful message to the end user.

�. Log enough information to help a programmer identify root cause.

Step 01: Introducing Exceptions

In the previous step, we gave you a few instances of exceptions, such as your program running out of memory, or

your code trying to divide a number by 0 .

Want to see a live example of the Java run-time throwing an exception? The next example will satisfy your thirst.

Snippet-1 : Exception Condition

ExceptionHandlingRunner.java

 package ;

 public class ExceptionHandlingRunner {
 public static void main(String[] args) {
 callMethod();
 System.out.println("callMethod Done");
 }

 static void callMethod() {
 String str = null;
 int len = str.length();
 System.out.println("String Length Done");
 }
 }

Console Output

java.lang.NullPointerException

com.in28minutes.exceptionhandling

https://www.youtube.com/watch?v=34ttwuxHtAE

Exception in thread "main" java.lang.NullPointerException

at com.in28minutes.exceptionhandling.ExceptionHandlingRunner.callMethod (ExceptionHandlingRunner.java:8)

at com.in28minutes.exceptionhandling.ExceptionHandlingRunner.main (ExceptionHandlingRunner.java:4)

Snippet-01 Explained

A java.lang.NullPointerException is thrown by the Java run-time when we called length() on the null
reference.

If an exception is not handled in the entire call chain, including main , the exception is thrown out and the program
terminates. System.out.println() statements after the exception are never executed.

The runtime prints the call stack trace onto the console.

For instance, consider this simple class Test :

 public class Test {
 public static void main(String[] args) {
 callOne();
 }

 public static void callOne() {
 callTwo();
 }

 public static void callTwo() {
 callThree();
 }

 public static void callThree() {
 String name;
 System.out.println("This name is %d characters long", name.length());
 }
 }

However, the code name.length() used in callThree() caused a NullPointerException to be thrown. However,

this is not handled, and the console coughs up the following display:

Exception in thread "main" java.lang.NullPointerException

at Test.callThree(Test.java:13)

at Test.callTwo(Test.java:9)

at Test.callOne(Test.java:6)

at Test.main(Test.java:3)

This is nothing but a call trace of the stack, frozen in time.

Summary

In this step, we:

Saw a live example of an exception being thrown

Understood how a call trace on the stack appears when a exception occurs

Reinforced this understanding with another example

Step 02: Handling An Exception

In Java, exception handling is achieved through a try - catch block.

Snippet-01 : Handling An Exception

ExceptionHandlingRunner.java

 package ;

 public class ExceptionHandlingRunner {
 public static void main(String[] args) {
 method1();
 System.out.println("main() Done");
 }

 static void method1() {
 method2();
 System.out.println("method1() done");
 }

 static void method2() {
 try {
 String str = null;
 int len = str.length();
 System.out.println("method2() Done");
 } catch (Exception ex) {
 }
 }
 }

Console Output

method1() Done

main() Done

Snippet-01 Explained

We have handled an exception here with a try - catch block. Its syntax resembles this:

 try {
 //< program-logic code block >
 } catch (Exception e) {
 //< exception-handling code block >
 }

The exception (the NullPointerException) still occurs after adding this block, but now it's actually caught.

Although we did nothing with the caught exception, we did avoid a sudden end of the program.

The statements following int len = str.length() in method2 are not executed.

However, all of method1() 's code was run (with the "method1 Done" message getting printed). main() method

also completed execution successfully.

The program thus terminated gracefully. method1() and main() are both unaware of the NullPointerException
occurring within method2() .

Snippet-02: Print Debug Information

Let's add ex.printStackTrace(); .

ExceptionHandlingRunner.java

com.in28minutes.exceptionhandling

 package ;

 public class ExceptionHandlingRunner {
 public static void main(String[] args) {
 method1();
 System.out.println("main() Done");
 }

 static void method1() {
 method2();
 System.out.println("method1() done");
 }

 static void method2() {
 try {
 String str = null;
 int len = str.length();
 System.out.println("method2() Done");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }

Console Output

java.lang.NullPointerException

Exception in thread "main" java.lang.NullPointerException

at com.in28minutes.exceptionhandling.ExceptionHandlingRunner.method2 (ExceptionHandlingRunner.java:14)

at com.in28minutes.exceptionhandling.ExceptionHandlingRunner.method1 (ExceptionHandlingRunner.java:8)

at com.in28minutes.exceptionhandling.ExceptionHandlingRunner.main (ExceptionHandlingRunner.java:4)

method1() Done

main() Done

printStackTrace() is provided by the Exception class , which every exception inherits from. This method
prints the frozen call trace of the program when the exception occurred, but without terminating the program. The

code next continues to run.

The stack trace provides useful information to you, the programmer,to debug the exception scenario.

Summary

In this step, we:

Were introduced to Java's basic mechanism to handle exceptions, the try - catch block

Saw how a program runs and ends gracefully, when an exception is handled

Observed how the printStackTrace method gives debug information to the programmer

Step 03: The Exception Hierarchy

The code in the try - catch block above does not work by black magic. From the call trace, it's clear that this

program encounters a NullPointerException in method1() . What's surprising, is that it was caught by a catch
clause meant for an Exception ! The reason this worked is because NullPointerException is-a Exception .

You heard right! Java has a hierarchy of exception types, rooted at class Exception . For instance,

com.in28minutes.exceptionhandling

NullPointerException is-a RuntimeException , and

RuntimeException is-a Exception .

So effectively, NullPointerException is-a Exception !

Different branches of this inheritance-tree actually denote different exception categories. We'll dwell on this topic a

little later.

Snippet-01 : Catching NullPointerException

Let's add an additional catch for NullPointerException in method2.

ExceptionHandlingRunner.java

 package ;

 public class ExceptionHandlingRunner {
 public static void main(String[] args) {
 method1();
 System.out.println("main() Done");
 }

 static void method1() {
 method2();
 System.out.println("method1() done");
 }

 static void method2() {
 try {
 String str = null;
 int len = str.length();
 System.out.println("method2() Done");
 } catch (NullPointerException e) {
 System.out.println("NullPointerException");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }

Console Output

NullPointerException

method1() Done

main() Done

Snippet-01 Explained

Among all the catch clauses following the try , one and only one of them, may get executed. The first catch

clause to match, in serial order after the try , always gets executed. If none match, the exception is not handled.

We placed an additional catch block within method2() , to handle NullPointerException . Typically, the most

specific exception class is matched. Hence the catch block for NullPointerException matches.

You need to order the catch blocks after a try , from more-specific to less-specific matches.

Snippet-02 : Catching another exception

 package ;

com.in28minutes.exceptionhandling

com.in28minutes.exceptionhandling

 public class ExceptionHandlingRunner {
 public static void main(String[] args) {
 method1();
 System.out.println("main() Done");
 }

 static void method1() {
 method2();
 System.out.println("method1() done");
 }

 static void method2() {
 try {
 int[] numbers = {1, 2};
 int num = numbers[3];
 System.out.println("method2() Done");
 } catch (NullPointerException e) {
 System.out.println("NullPointerException");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }

Console Output

ArrayIndexOutOfBoundsException : 3

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException

at com.in28minutes.exceptionhandling.ExceptionHandlingRunner.method2 (ExceptionHandlingRunner.java:14)

at com.in28minutes.exceptionhandling.ExceptionHandlingRunner.method1 (ExceptionHandlingRunner.java:8)

at com.in28minutes.exceptionhandling.ExceptionHandlingRunner.main (ExceptionHandlingRunner.java:4)

method1() Done

main() Done

Snippet-02 Explained

ArrayIndexOutOfBoundsException is-a IndexOutOfBoundsException , which is-a RuntimeException , which in
turn is-a Exception .

ArrayIndexOutOfBoundsException is not a sub class of NullPointerException . Hence, it does not match with the
first catch block. ArrayIndexOutOfBoundsException is a sub class of Exception . Hence, that catch block

matched, and the statement ex.printStackTrace(); within it ran.

If we omit the handler for Exception , the ArrayIndexOutOfBoundsException is not caught by this try - catch
block. Since it is not handled in method1() , or even later in main() , our program would have to stop suddenly.

Summary

In this step, we:

Learned that there is an exception hierarchy in Java, rooted at Exception

Looked at an example that could cause multiple exceptions to occur

Observed how a handler for Exception could match any exception

Step 04: The Need For finally

When an exception occurs, the programmer's world can turn upside-down in a matter of moments. If not handled,

the program terminates all of a sudden, with no light at the end of the tunnel.

Snippet-01 : Unreleased Resources

FinallyRunner.java

 package ;
 import Scanner;

 public class FinallyRunner {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 // ... Program logic, probably using scanner input
 int num = numbers[5];
 System.out.println("Before scanner close");
 scanner.close();
 }
 }

Console Output

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException

at com.in28minutes.exceptionhandling.FinallyRunner.main (FinallyRunner.java:8)

Snippet-01 Explained

This example makes use of Scanner object to read from console. Ideally a Scanner object should be closed using

scanner.close(); .

However, in our example, it is not called because a line before it threw an exception. (int num = numbers[5]; tries

to access the 5th element of a 4-element array).

What this means, is a system resource that has been acquired, is never released.

It's important to ensure that any acquired resource is always released; whether on normal or abrupt termination.

Let's see how you do this while handling an exception.

Snippet-02 : Releasing Resources

FinallyRunner.java

 package ;
 import Scanner;

 public class FinallyRunner {
 public static void main(String[] args) {
 Scanner scanner = null;
 try {
 scanner = new Scanner(System.in);
 // ... Program logic, probably using scanner input
 int[] numbers = {1, 2, 3, 4};
 int num = numbers[5];
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if(scanner != null) {
 System.out.println("Before scanner close");
 scanner.close();
 }
 }

com.in28minutes.exceptionhandling
java.util.

com.in28minutes.exceptionhandling
java.util.

 System.out.println("Before exiting main");
 }
 }

Console Output

ArrayIndexOutOfBoundsException

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException

at com.in28minutes.exceptionhandling.FinallyRunner.main (FinallyRunner.java:10)

Before scanner close

Before exiting main

Snippet-02 Explained

Code in finally is almost always executed - even when there are exceptions.

We added a null check on scanner since scanner = new Scanner(System.in); could also result in an exception.

 } finally {
 if(scanner != null) {
 System.out.println("Before scanner close");
 scanner.close();
 }
 }

Summary

In this step, we:

Observed how exceptional conditions could result in resource leaks

Learned about the finally clause in a try - catch block

Step 05: Programming Puzzles - PP-01

Puzzle-01

Would the finally clause be executed if

The statement //str = "Hello"; remains as-is

The statement //str = "Hello"; has its comments removed?

 public static void method3() {
 Connection connection = new Connection();
 connection.open();
 try {
 String str = null;
 //str = "Hello";
 str.toString();
 return;
 } catch(Exception e) {
 } finally {
 connection.close();
 }
 }

Answer

Yes

Yes

Puzzle-02

When will code in a finally clause not get executed?

Answer

In case of statements within the same finally clause, preceding this code, throwing an exception

In case of a JVM crash. This can be simulated in some scenarios by calling System.exit with an

appropriate int argument, within an appropriate catch clause of the same try - catch - finally
clause.

Puzzle-03

Will the following code, a try - finally without a catch ?

 public static void method4() {
 Connection connection = new Connection();
 connection.open();
 try {
 String str = null;
 //str = "Hello";
 str.toString();
 return;
 } finally {
 connection.close();
 }
 }

Answer : Yes

Puzzle-04

Will the following code, a try without a catch or a finally ?

 public static void method5() {
 Connection connection = new Connection();
 connection.open();
 try {
 String str = null;
 //str = "Hello";
 str.toString();
 return;
 }
 }

Answer : No

Step 06: Handling Exceptions: Do We Have A Choice?

Sometimes, in Java you are forced to handle exceptions.

Snippet-02: Checked Exceptions - v1

CheckedExceptionRunner.java

 package ;

 public class CheckedExceptionRunner {
 public static void main(String[] args) {
 Thread.sleep(2000);
 }
 }

Snippet-02 Explained

This program will not compile!

The reason we get flagged by a compiler error, lies in the signature of the sleep() method. Here is its definition

within the Thread class :

 public static native void sleep(long millis) throws InterruptedException {
 //...
 }

This declaration is a bit different from what you normally expect for a method, isn't it! It contains a throws
specification.

When a method throws an Exception, the calling method should:

Handle it using try - catch block

Or declare throws in its signature

Let's use try - catch block to start off.

Snippet-03: Checked Exceptions - v2

CheckedExceptionRunner.java

 package ;

 public class CheckedExceptionRunner {
 public static void main(String[] args) {
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Snippet-03 Explained

main() , which is the caller of sleep() , chooses the option of handling InterruptedException with a try -
catch block.

The throws keyword

throws is used to declare that a method might throw exceptions. This involves a throws keyword, followed by a

list of exception types.

Snippet-04 : Method with risky code #1

com.in28minutes.exceptionhandling

com.in28minutes.exceptionhandling

 package ;

 public class CheckedExceptionRunner {
 public static void main(String[] args) {
 try {
 riskyMethod();
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 public static void riskyMethod() throws InterruptedException {
 Thread.sleep(5000);
 }
 }

Snippet-04 Explained

Here, we have removed the try - catch block within riskyMethod() , because we want to follow another way of

managing the exception. As an alternative, we added a throws specification to riskyMethod() to make the code

compile.

We made main method handle the exception.

Summary

In this step, we:

Discovered that certain exceptions in Java do not force you to handle them

Learned that all the rest must be managed/handled

Observed that there are two ways to manage those "Checked" exceptions:

Handling with a try - catch block

Using a throws specification

Step 08: The Java Exception Hierarchy

Right at the root (top, we mean), the Java exception hierarchy looks like this:

 class Error extends Throwable{}
 class Exception extends Throwable{}
 class InterruptedException extends Exception{}
 class RuntimeException extends Exception{}
 class NullPointerException extends RuntimeException{}
 ...

Once an Error occurs, there is nothing a programmer could do. Examples include:

The JVM running out of heap memory space

An Exception can be handled. There are two types of Exceptions.

RuntimeException and its sub-classes. These come under the category of unchecked exceptions. Another

example we've seen is NullPointerException , which inherits from RuntimeException .

All other sub-classes of Exception , excluding the sub-tree rooted at RuntimeException , are called checked
exceptions. An instance we've encountered is InterruptedException .

If a method throws a checked exception is called, then either:

com.in28minutes.exceptionhandling

The method call must be enclosed in a try - catch block for proper handling, or

The caller must throw this exception out, to its own caller. Its signature must also be enhanced using a throws
specification.

If an unchecked exception is involved, then:

You have the options of handling with try - catch block.

It is not mandatory to handle it.

A checked exception must be handled, whereas as unchecked exception may or may not be handled.

Summary

In this step, we:

Discovered that within the Java exception hierarchy, there are two categories:

Checked exceptions

Unchecked exceptions

There are different strategies to manage these two categories

Step 09: Throwing an Exception

So far, we have seen how to handle an exception, that is thrown by a built-in Java method. Now, let's explore how

we can alert a user about exceptional conditions in our own code, by throwing exceptions.

Snippet-01 : Throwing An Exception

ThrowingExceptionRunner.java

 package ;

 class Amounts {
 private String currency;
 private int amount;

 public Amounts(String currency, int amount) {
 super();
 this.currency = currency;
 this.amount = amount;
 }

 public void add(Amount that) {
 if(!this.currency.equals(that.currency)) {
 throw new RuntimeException("Currencies Don't Match");
 }
 this.amount += that.amount;
 }

 public Sring toString() {
 return amount + " " + currency;
 }
 }

 public class ThrowingExceptionRunner {
 public static void main(String[] args) {
 Amount amount1 = new Amount("USD", 10);
 //Amount amount2 = new Amount("USD", 20);
 Amount amount2 = new Amount("EUR", 20);
 amount1.add(amount2);
 System.out.println(amount1);
 }
 }

com.in28minutes.exceptionhandling

Console Output

Exception in thread "main" java.lang.RuntimeException:Currencies Don't Match

at com.in28minutes.exceptionhandling.ThrowingExceptionRunner.main (ThrowingExceptionRunner.java:26)

Snippet-01 Explained

Since adding 10 USD and 20 EUR does not make sense in the real world, it's important to tell the user that add()
won't work for different currencies. The most direct way is to throw an exception, which the code throw new
RuntimeException("Currencies Don't Match"); does.

This thrown exception object can be handled inside main() . By calling printStackTrace() on the caught

exception reference, you get debug information like before.

Snippet-02 : Throwing a Checked Exception

Exception is a Checked Exception. If a method throws an instance of Exception class, it needs to declare it -

public void add(Amount that) throws Exception { .

ThrowingExceptionRunner.java

Console Output

 package ;

 class Amounts {
 private String currency;
 private int amount;

 public Amounts(String currency, int amount) {
 super();
 this.currency = currency;
 this.amount = amount;
 }

 public void add(Amount that) throws Exception {
 if(!this.currency.equals(that.currency)) {
 throw new Exception("Currencies Don't Match : " + this.currency + " & that.currency)
 }
 this.amount += that.amount;
 }

 public String toString() {
 return amount + " " + currency;
 }
 }

 public class ThrowingExceptionRunner {
 public static void main(String[] args) {
 Amount amount1 = new Amount("USD", 10);
 //Amount amount2 = new Amount("USD", 20);
 Amount amount2 = new Amount("EUR", 20);
 try {
 amount1.add(amount2);
 System.out.println(amount1);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }

com.in28minutes.exceptionhandling

java.lang.RuntimeException:Currencies Don't Match : USD & EUR

Exception in thread "main" java.lang.RuntimeException:Currencies Don't Match

at com.in28minutes.exceptionhandling.ThrowingExceptionRunner.main (ThrowingExceptionRunner.java:26)

Exception is not a RuntimeException or one of its sub-classes, it is a checked exception. So, it needs to be

declared when it is thrown - public void add(Amount that) throws Exception .

Summary

In this step, we:

Learned that it is possible to throw an exception from code inside any method we write

When a method throws checked exception, it should declare it.

Step 10: Throwing A Custom Exception

It is also possible for you to throw a custom exception. You can do this by defining your own exception class , only
that it must inherit from one of the built-in exception classes. Note that:

If you sub-class a checked exception, your exception also becomes checked.

If you sub-class an unchecked exception, your exception would be unchecked.

Snippet-01 : Throw a custom exception

ThrowingExceptionRunner.java

 package ;

 class CurrenciesDoNotMatchException extends Exception {
 public CurrenciesDoNotMatchException(String msg) {
 super(msg);
 }
 }

 class Amounts {
 private String currency;
 private int amount;

 public Amounts(String currency, int amount) {
 super();
 this.currency = currency;
 this.amount = amount;
 }

 public void add(Amount that) throws Exception {
 if(!this.currency.equals(that.currency)) {
 throw new CurrenciesDoNotMatchException("Currencies Don't Match : " + this.currency +
 }
 this.amount += that.amount;
 }

 public String toString() {
 return amount + " " + currency;
 }
 }

 public class ThrowingExceptionRunner {
 public static void main(String[] args) {
 Amount amount1 = new Amount("USD", 10);
 //Amount amount2 = new Amount("USD", 20);
 Amount amount2 = new Amount("EUR", 20);

com.in28minutes.exceptionhandling

Console Output

com.in28minutes.exceptionhandling.CurrenciesDoNotMatchException : Currencies Don't Match : USD & EUR

Exception in thread "main" com.in28minutes.exceptionhandling.CurrenciesDoNotMatchException : Currencies Don't

Match : USD & EUR

at com.in28minutes.exceptionhandling.ThrowingExceptionRunner.main (ThrowingExceptionRunner.java:26)

Snippet-01 Explained

The class CurrenciesDoNotMatchException clearly is a checked exception. Hence, rules that apply for throwing

and handling checked applications, apply to it as well.

If instead, CurrenciesDoNotMatchException were to sub-class RuntimeException , it would be an unchecked
exception. Adding the throws specification to the add() definition would not be needed. Also, no method in the

call sequence of add() is required to handle it.

Summary

In this step, we:

Discovered that Java allows you to define your own custom exception classes

Whether a custom exception is checked or unchecked, depends on which exception it sub-classes.

Saw an example of how to raise and handle a custom exception

Step 11: Introducing try -With-Resources

try -with-resources makes managing resource in a try - catch - finally block. Let's look at an example.

Snippet-01: try-with-resources

 package ;
 import Scanner;

 public class TryWithResourcesRunner {
 public static void main(String[] args) {
 try (Scanner scanner = new Scanner(System.in)) {
 // ... Program logic, probably using scanner input
 int[] numbers = {1, 2, 3, 4};
 int num = numbers[5];
 }
 //scanner.close();
 }
 }

Snippet-01 Explained

The try -with-resources version was introduced in Java SE 7. It encloses the resource to be managed within

parentheses, along with the try keyword.

 try {
 amount1.add(amount2);
 System.out.println(amount1);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }

com.in28minutes.exceptionhandling
java.util.

In this case, Scanner is compatible with such resource management, because it's defined to implement the

Closeable interface . This interface in turn, is a sub-class of the abstract class AutoCloseable .

Closeable extends AutoCloseable{};

Scanner implements Closeable{};

For try -with-resources, a catch and/or a finally clause are not mandatory.

Also, the call to scanner.close is no longer required.

Summary

In this step, we:

Discovered a veriant of the try - catch - finally block, called try -with-resources

Saw that it can be used to manage resource cleanly, provided the resource implements the AutoCloseable
interface .

Step 12: Programming Puzzle Set PP_02

Puzzle-01

Does the following program handle the exception thrown?

 try {
 AmountAdder.addAmounts(new Amount("RUPEE", 5), new Amount("RUPEE", 5);
 String str = null;
 str.toString();
 } catch(CurrenciesDoNotMatchException ex) {
 ex.printStackTrace();
 }

Answer : No

Puzzle-01 Explained

The exception thrown is a NullPointerException , whereas the one we are trying to catch is a
CurrenciesDoNotMatchException .

Puzzle-02

Does the following code compile?

 try {
 AmountAdder.addAmounts(new Amount("RUPEE", 5), new Amount("RUPEE", 5);
 String str = null;
 str.toString();
 } catch(Exception e) {
 e.printStackTrace();
 } catch(CurrenciesDoNotMatchException ex) {
 ex.printStackTrace();
 }

Answer : No

Puzzle-02 explained

The order of catch clauses for exceptions needs to be from less specific to more specific.

CurrenciesDoNotMatchException is a sub-class of Exception . Hence, error.

Puzzle-03

Does the following code compile?

 try {

 } catch (IOException | SQLException ex) {
 ex.printStackTrace();
 }

Answer : Yes

Puzzle-03 Explained

This feature was added in Java SE 7.

File Operations

We would be aware that any computer has a hard disk, on which information is stored. This information is stored in

units called files. For ease of access, file are grouped together and organized into directories. The operating

system has a sub-system called the file-system, which has the responsibility of interfacing system and user

programs, with files and directories on disk.

The Java Runtime System also communicates with the native file-system, and makes use of its services to provide a

file programming interface to Java programmers.

In this section, we will explore a few basic ways in which programmers can interact with the native file-system,

through the platform independent Java file API.

Listing Directory Contents

When we develop a Java software project in the Eclipse IDE environment, the root folder of the project has several

interesting file and sub-folders contained within it. From now on, we use the terms "folder" and "directory"

interchangeably, as they have equivalent meanings.

Let's write a simple Java program to list the contents of one such project folder.

Snippet-1 : Listing Directory Contents

The java.nio.file system package has a bunch of utility class es and interface s to help us navigate the
native file system.

DirectoryScanRunner.java

 package ;
 import Files;
 import Paths;
 import IOException;

 public class DirectoryScanRunner {
 public static void main(String[] args) throws IOException {
 Files.list((Paths.get(".")).forEach(System.out::println);
 }
 }

com.in28minutes.files
java.nio.file.
java.nio.file.
java.io.

Console Output

./.classpath

./.project

_./.DS_Store_

./bin

./resources

./src

Snippet-1 Explained

A Path class is the entity used to denote a pathname in Java NIO Library. NIO stands for "New I/O", which was

introduced in Java SE, replacing the earlier, very awkward File I/O Library. It is no longer new though, but that's

another issue!

" . " denotes the current directory in the file-system.

The Paths.get() method returns the path-name of the specified directory in a format that the Files.get()
method understands.

The Files.get() method does a lazy traversal of the directory it is provided with, in the sense that:

It lists regular files it encounters.

When faced with directory files, it merely lists them, without recursively traversing them.

The contents of the root directory are listed as path-names, with each path-name being relative to the root

directory.

Snippet-2 : Recursive Directory Traversal

We can specify level 2 in Files.walk(currentDirectory, 2) . So, folders until level 2 are scanned.

DirectoryScanRunner.java

 package ;
 import Files;
 import Path;
 import Paths;
 import IOException;

 public class DirectoryScanRunner {
 public static void main(String[] args) throws IOException {
 Path currentDirectory = Paths.get(".");
 //Files.list(currentDirectory).forEach(System.out::println);
 Files.walk(currentDirectory, 2).forEach(System.out::println);
 }
 }

Console Output

./.classpath

./.project

_./.DS_Store_

./bin

com.in28minutes.files
java.nio.file.
java.nio.file.
java.nio.file.
java.io.

./bin/files

./resources

./src

./src/files

Snippet-3 : Level-4 Traversal

DirectoryScanRunner.java

 package ;
 import Files;
 import Path;
 import Paths;
 import IOException;

 public class DirectoryScanRunner {
 public static void main(String[] args) throws IOException {
 Path currentDirectory = Paths.get(".");
 Files.walk(currentDirectory, 4).forEach(System.out::println);
 }
 }

Console Output

./.classpath

./.project

_./.DS_Store_

./bin

./bin/files

./bin/files/DirectoryScanRunner.class

./resources

./src

./src/files

./src/files/DirectoryScanRunner.java

Snippet-4 : Only list .java files during traversal

We use a predicate Files.walk(currentDirectory, 4).filter(predicate) to filter only Java files.

DirectoryScanRunner.java

 package ;
 import Files;
 import Path;
 import Paths;
 import Predicate;
 import IOException;

 public class DirectoryScanRunner {
 public static void main(String[] args) throws IOException {

com.in28minutes.files
java.nio.file.
java.nio.file.
java.nio.file.
java.io.

com.in28minutes.files
java.nio.file.
java.nio.file.
java.nio.file.
java.util.function.
java.io.

 Path currentDirectory = Paths.get(".");
 Predicate<? super Path> predicate = path -> String.valueOf(Path).contains(".java");

 //Files.walk(currentDirectory, 4).forEach(System.out::println);
 Files.walk(currentDirectory, 4).filter(predicate)
 .forEach(System.out::println);
 }
 }

Console Output

./src/files/DirectoryScanRunner.java

Snippet-5 : Filtered Traversal with find()

We can use a matcher - Files.find(currentDirectory, 4, matcher) which is configured to check the path

attribute for .java extension - (path, attributes) -> String.valueOf(path).contains(".java")

DirectoryScanRunner.java

 package ;
 import Files;
 import Path;
 import Paths;
 import Predicate;
 import BasicFileAttributes;
 import BiPredicate;
 import IOException;

 public class DirectoryScanRunner {
 public static void main(String[] args) throws IOException {
 Path currentDirectory = Paths.get(".");
 //Predicate<? super Path> predicate = path -> String.valueOf(path).contains(".java");
 //Files.walk(currentDirectory, 4).filter(predicate).forEach(System.out::println);
 BiPredicate<Path, BasicFileAttributes> matcher =
 (path, attributes) -> String.valueOf(path).contains(".java");
 Files.find(currentDirectory, 4, matcher);
 }
 }

Console Output

./src/files/DirectoryScanRunner.java

Snippet-6 : Filtering directories

DirectoryScanRunner.java

 package ;
 import Files;
 import Path;
 import Paths;
 import Predicate;
 import BasicFileAttributes;
 import BiPredicate;
 import IOException;

 public class DirectoryScanRunner {
 public static void main(String[] args) throws IOException {
 Path currentDirectory = Paths.get(".");
 //BiPredicate<Path, BasicFileAttributes> matcher =
 //(path, attributes) -> String.valueOf(path).contains(".java");

com.in28minutes.files
java.nio.file.
java.nio.file.
java.nio.file.
java.util.function.
java.nio.file.attribute.
java.util.function.
java.io.

com.in28minutes.files
java.nio.file.
java.nio.file.
java.nio.file.
java.util.function.
java.nio.file.attribute.
java.util.function.
java.io.

 BiPredicate<Path, BasicFileAttributes> directoryMatcher =
 (path, attributes) -> attributes.isDirectory();
 Files.find(currentDirectory, 4, directoryMatcher);
 }
 }

Console Output

./bin

./bin/files

./resources/

./src/

./src/files

We are making use of a matcher checking attributes.isDirectory() .

Snippet-7 : Reading a File

./resources/data.txt

123.122

asdfghjkl

Apple

Bat

Cat

FileReadRunner.java

 package ;
 import Files;
 import Paths;
 import IOException;

 public class FileReadRunner {
 public static void main(String[] args) throws IOException {
 Path pathFileToRead = Paths.get("./resources/data.txt");
 List<String> lines = Files.readAllLines(pathFileToRead);
 System.out.println(lines);
 }
 }

Console Output

[123.122, asdfghjkl, Apple, Bat, Cat]

Files.readAllLines(pathFileToRead) makes it easy to read content of a file to list of String values.

Snippet-8 : Streamed File Read

Files.readAllLines(pathFileToRead) makes it easy to read content of a file. However, streaming is a better

options when reading large files or when less memory is available.

./resources/data.txt

com.in28minutes.files
java.nio.file.
java.nio.file.
java.io.

123.122

asdfghjkl

Apple

Bat

Cat

FileReadRunner.java

 package ;
 import Files;
 import Paths;
 import IOException;

 public class FileReadRunner {
 public static void main(String[] args) throws IOException {
 Path pathFileToRead = Paths.get("./resources/data.txt");
 //List<String> lines = Files.readAllLines(pathFileToRead);
 //System.out.println(lines);
 Files.lines(pathFileToRead).forEach(System.out::println);
 }
 }

Console Output

123.122

asdfghjkl

Apple

Bat

Cat

Files.lines(pathFileToRead) returns a stream which can be consumed as needed.

Snippet-9 : Printing file contents in lower-case

We can use map function to map to String::toLowerCase

./resources/data.txt

123.122

asdfghjkl

Apple

Bat

Cat

FileReadRunner.java

 package ;
 import Files;
 import Paths;

com.in28minutes.files
java.nio.file.
java.nio.file.
java.io.

com.in28minutes.files
java.nio.file.
java.nio.file.

 import IOException;

 public class FileReadRunner {
 public static void main(String[] args) throws IOException {
 Path pathFileToRead = Paths.get("./resources/data.txt");
 //Files.lines(pathFileToRead).forEach(System.out::println);
 Files.lines(pathFileToRead)
 .map(String::toLowerCase)
 .forEach(System.out::println);
 }
 }

Console Output

123.122

asdfghjkl

apple

bat

cat

Snippet-9 : Filtering file contents

You can also filter file content using the filter method.

FileReadRunner.java

 package ;
 import Files;
 import Paths;
 import IOException;

 public class FileReadRunner {
 public static void main(String[] args) throws IOException {
 Path pathFileToRead = Paths.get("./resources/data.txt");
 //Files.lines(pathFileToRead).forEach(System.out::println);
 //Files.lines(pathFileToRead).map(String::toLowerCase).forEach(System.out::println);
 Files.lines(pathFileToRead)
 .map(String::toLowerCase)
 .filter(str -> str.contains("a"))
 .forEach(System.out::println);
 }
 }

Console Output

asdfghjkl

apple

bat

cat

Snippet-10 : Writing to a file

Files.write can be used to write to a file.

FileWriteScanner.java

java.io.

com.in28minutes.files
java.nio.file.
java.nio.file.
java.io.

 package ;
 import Files;
 import Paths;
 import IOException;

 public class FileWriteRunner {
 public static void main(String[] args) throws IOException {
 Path pathFileToWrite = Paths.get("./resources/file-write.txt");
 List<String> list = List.of("Apple", "Boy", "Cat", "Dog", "Elephant");
 Files.write(pathFileToWrite, list);
 }
 }

./resources/file-write.txt

Apple

Boy

Cat

Dog

Elephant

Concurrency : Advanced Topics

Let's create a simple counter.

Snippet-1: Atomic Operations : Counter

Counter.java

 package ;

 public class Counter {
 private int i = 0;

 public void increment() {
 i++;
 }

 public int getI() {
 return i;
 }
 }

ConcurrencyRunner.java

 package ;

 public class ConcurrencyRunner {
 public static void main(String[] args) {
 Counter counter = new Counter();
 counter.increment();
 counter.increment();
 counter.increment();
 System.out.println(counter.get());

com.in28minutes.files
java.nio.file.
java.nio.file.
java.io.

com.in28minutes.concurrency

com.in28minutes.concurrency

 }
 }

Snippet-1 Explained

Quite straightforward!

Counter increment() method is NOT Atomic!

Let's look at the code. It seemingly involves just one operation.

 public void increment() {
 i++;
 }

The operation i++ actually involves the following steps:

Step 1. Read the value of i from memory into the CPU registers

Step 2. Increment the value in the CPU registers

Step 3. Store the incremented value back into the memory location of i

i++ is not an atomic operation.

What if increment is not atomic?

Let's take an example of two Threads, T1 and T2 running in ConcurrencyRunner access a single Counter object

instance.

Let's say the threads concurrently invoke the increment and getI .

Assume the initial value of i is 15 . Let's take a closer look at a possible scenario:

T1 calls increment() first, and successfully completes Step 1 of i++ . Gets a value of 15.

The scheduler switches threads to T2 .

T2 calls increment() first, and successfully completes Step 1 of i++ .Gets a value of 15.

The scheduler switches to T1 . T1 resumes execution of increment() , and completes steps 2 and 3 of i++ .
Completes execution of increment() . Value of i is over-written with 16 .

The scheduler switches to T2 . In it's CPU register context, i is 15 , not 16 . T2 resumes execution of

increment() , and completes steps 2 and 3 of i++ . Completes execution of increment() .Value of i in the

Counter instance is over-written with 16 .

Ideally, the final value of i after two increment s should have been 17 . This would result when the operations run
serially one after the other.

This scenario, where the result of a concurrent computation (involving a sequence of operations) depends on the

relative order of execution of those operations by the threads involved, is called a race condition.

There is a popular English saying: "There is many a slip, between the cup and the lip". This refers to the fact that

anything can happen between the time when we hold a cup of tea in our hands, and the time when we actually get

to take a sip of the tea.

This definitely rings true here.

The increment operation is not actually not as smooth as it seems. because it is not atomic, slip-ups can and will

often occur. This brings us to the concept of Thread-Safety.

A method is said to be thread-safe, if it can be run in a concurrent environment (involving several concurrent

invocations by independent threads) without race-conditions.

Revisited : The synchronized Keyword

Adding the keyword synchronized to the signature of a class method makes it thread safe.

Snippet-2

Counter.java

 package ;

 public class Counter {
 private int i = 0;

 synchronized public void increment() {
 i++;
 }

 public int getI() {
 return i;
 }
 }

Snippet-2 Explained

After adding synchronized keyword to the method increment , only one thread will be able to execute the
method, at a time. Hence, race condition is avoided.

Snippet-3 : less concurrency

synchronized keyword make the code thread safe. However, it causes all other threads to wait. This can result in

performance issues. Let's look at an example:

BiCounter.java

 package ;

 public class BiCounter {
 private int i = 0;
 private int j = 0;

 synchronized public void incrementI() {
 i++;
 }

 synchronized public void incrementJ() {
 j++;
 }

 public int getI() {
 return i;
 }

 public int getJ() {
 return j;
 }
 }

ConcurrencyRunner.java

 package ;

com.in28minutes.concurrency

com.in28minutes.concurrency

com.in28minutes.concurrency

 public class ConcurrencyRunner {
 public static void main(String[] args) {
 BiCounter counter = new BiCounter();
 counter.incrementI();
 counter.incrementJ();
 counter.incrementI();
 System.out.println(counter.get());
 }
 }

Snippet-3 Explained

Both incrementI() and incrementJ() of class BiCounter are synchronized . Therefore, at any given time, at
most one thread can execute either of these methods! Which means that, while a thread T1 is executing

counter.incrementI() within ConcurrencyRunner.main() , another thread T2 is not allowed to execute

counter.incrementJ() !

Just imagine, if there are a total of 12 threads wanting to increment counter . When one thread is running, the
other 11 have to wait!

Synchronization With Locks

Let's look at another synchronization option - Locks

Snippet-4: BiCounter With Locks

BiCounterWithLocks.java

 package ;
 import ReentrantLock;

 public class BiCounterWithLocks {
 private int i = 0;
 private int j = 0;
 private Lock LockForI = new ReentrantLock();
 private Lock LockForJ = new ReentrantLock();

 public void incrementI() {
 lockForI.lock();
 i++;
 lockForI.unlock();
 }

 public void incrementJ() {
 lockForJ.lock();
 j++;
 lockForJ.unlock();
 }

 public int getI() {
 return i;
 }

 public int getJ() {
 return j;
 }
 }

Snippet-4 Explained

i++ and j++ are the pieces of code to protect. We use two locks lockForI and lockForJ. If a thread wants to

execute i++ , it needs to first get a lock to it - implemented using lockForI.lock() . Once it performs the

com.in28minutes.concurrency
java.util.concurrent.locks.

operation, it can release the lock lockForI.unlock() .

The Lock s lockForI and lockForJ are totally independent of each other. Therefore, a thread T2 can execute

j++ within incrementJ() , at the same time that thread T1 is executing i++ within incrementI() .

Atomic Classes

The operation i++ , small though it might seem, gave us quite a bit headache!

If a seemingly minute operation might need so much worrying about, imagine writing concurrent data structures

that manipulate linked lists with multiple link operations!

It would be really nice if someone could take care of these tiny operations for us, otherwise we would have hard

time finding out what code to definitely lock, and what code need not be!

Java addresses this issue for basic data types, by providing a few classes that are inherently thread-safe. A good

example is AtomicInteger , which is a wrapper around the int primitive type.

Snippet-5 : AtomicInteger

BiCounterWithAtomicInteger.java

 package ;
 import AtomicInteger;

 public class BiCounterWithAtomicInteger {
 private AtomicInteger i = new AtomicInteger();
 private int AtomicInteger = new AtomicInteger();

 public void incrementI() {
 i.incrementAndGet();
 }

 public void incrementJ() {
 j.incrementAndGet();
 }

 public int getI() {
 return i.get();
 }

 public int getJ() {
 return j.get();
 }
 }

Snippet-5 Explained

incrementAndGet is atomic. So, BiCounterWithAtomicInteger does not need to worry about synchronization.

Concurrent Collections

Java gave us a ready-made solution for thread-safe primitive data, with wrappers such as AtomicInteger . The
reasons this approach worked for int were:

Simple, small-sized underlying type

Wide-spread potential usage

How about collections?

Java provides classes like Vector (synchronized version of ArrayList) which can provide thread safety. But,
these inherit the problems with using synchronized.

com.in28minutes.concurrency
java.util.concurrent.atomic.

What are other options?

Snippet-6 : Need For ConcurrentMap

The code within the for loop does a get and then a put . It is not thread safe.

MapRunner.java

 package ;
 import HashMap;

 public class MapRunner {
 public static void main(String[] args) {
 String str = "Hello World";
 Map<Character, Integer> occurrences = new HashMap<>();
 char[] characters = str.toCharArray();
 for(char character:characters) {
 Integer count = occurrences.get(character);
 if(count == null) {
 occurrences.put(character, 1);
 } else {
 occurrences.put(character, count + 1);
 }
 }
 }
 }

Concurrent Collections provide atomic versions of operations such as those encountered above:

If entry does not exist, then create and initialize

If entry exists, then update

The ConcurrentMap interface

The interface ConcurrentMap has methods to implement compound operations. Such operations include:

V putIfAbsent(K key, V value);

V computeIfPresent(K key,
 BiFunction<? super K, ? super V, ? extends V> remappingFunction)

Snippet-7 : ConcurrentHashMap Logic - Stage 1

LongAdder provides an atomic increment method, which we are making use of to make the code a little more

thread safe. However, different threads could be executing occurrences.get() and occurrences.put() in

parallel. A race condition can still occur.

ConcurrentMapRunner.java

 package ;
 import Map;
 import HashTable;
 import LongAdder;

 public class ConcurrentMapRunner {
 public static void main(String[] args) {
 String str = "ABCD ABCD ABCD";
 for(char character:str.toCharArray()) {
 LongAdder longAdder = occurances.get(character);
 if(longAdder == null) {

com.in28minutes.collections
java.util.

com.in28minutes.concurrency
java.util.
java.util.
java.util.concurrent.atomic.

 longAdder = new LongAdder();
 }
 longAdder.increment();
 occurances.put(character, longAdder);
 }
 }
 }

Console Output

[=2, A=3, B=3, C=3, D=2]

Snippet-8 : ConcurrentHashMap Logic - Stage 2

We can use the method computeIfAbsent() from the collection ConcurrentHashMap to reduce the code to a

single, atomic operation.

ConcurrentMapRunner.java

 package ;
 import ConcurrentMap;
 import ConcurrentHashMap;
 import LongAdder;

 public class ConcurrentMapRunner {
 public static void main(String[] args) {
 ConcurrentMap<Character, LongAdder> occurances = new ConcurrentHashMap<>();

 String str = "ABCD ABCD ABCD";

 for(char character:str.toCharArray()) {
 occurances.computeIfAbsent(character, ch -> new LongAdder()).increment();
 }

 System.out.println(occurances);
 }
 }

Console Output

[=2, A=3, B=3, C=3, D=2]

ConcurrentHashMap

In HashTable , all methods are synchronized.

In ConcurrentHashMap , data structure is organized into disjoint regions. Access methods use different Locks for

different regions, reducing performance impact during concurrent access.

Concurrent Collections : Copy-On-Write Optimization

All values in Copy-On-Write collections are stored in an internal immutable (not-changeable) array. A new array is

created if there is any modification to the collection.

Read operations are not synchronized. Only write operations are synchronized.

Copy on Write approach is used in scenarios where reads greatly out number write s̓ on a collection.

CopyOnWriteArrayList & CopyOnWriteArraySet are implementations of this approach.

Copy on Write collections are typically used in Subject – Observer scenarios, where the observers very rarely

change. Most frequent operations would be iterating around the observers and notifying them.

com.in28minutes.concurrency
java.util.concurrent.
java.util.concurrent.
java.util.concurrent.atomic.

Snippet-9 : CopyOnWriteArrayList

CopyOnWriteArrayListRunner.java

 package ;
 import List;
 import CopyOnWriteArrayList;

 public class CopyOnWriteArrayListRunner {
 public static void main(String[] args) {
 List<String> list = new CopyOnWriteArrayList<>();
 // Total of 3 threads doing add()'s, maybe in a separate method
 list.add("Ant");
 list.add("Bat");
 list.add("Cat");

 //Total of 10000 threads looping on get(), again, in a separate method
 for(String element:list) {
 System.out.println(element);
 }
 }
 }

Snippet-9 Explained

CopyOnWriteArrayList.add() method is a synchronized method. And the copy-on-write algorithm ensures that

the copying is performed in a thread-safe manner, after which the write is done on a separate copy, while the

get() 's continue on the original array. Once the add() is done, the collection starts using the new array, and

discards the old one. This strategy continues for the lifetime of the program.

The CopyOnWriteArrayList.get method is NOT synchronized , since on the array that the reads work, there will
be no direct write through an add() .

Copy-On-Write collections should only be used for the specific usage scenarios, viz., very large number of data

structure traversals (data element reads only), compared to mutations (data element

insertions/deletions/modifications). In this way, high concurrency is achieved for traversals.

com.in28minutes.concurrency
java.util.
java.util.concurrent.

